KNOWLEDGE HYPERMARKET


Взаимное расположение графиков линейных функций
(Создана новая страница размером <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, ...)
Строка 5: Строка 5:
<br>  
<br>  
 +
<br>
 +
<br>
-
 
+
'''&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ГРАФИКОВ ЛИНЕЙНЫХ ФУНКЦИЙ '''  
-
 
+
-
'''&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ГРАФИКОВ ЛИНЕЙНЫХ ФУНКЦИЙ '''
+
<br>Вернемся еще раз к графикам линейных функций у = 2х- - 4 и у = 2х + 6, представленным на рисунке 51. Мы уже отмечали (в § 30), что эти две прямые параллельны прямой у = 2х, а значит, параллельны друг другу. Признаком параллельности служит равенство угловых коэффициентов (k = 2 для всех трех прямых: и для у = 2х, и для у = 2х - 4, и для у = 2х + 6). Если же угловые коэффициенты различны, как, например, у линейных функций у = 2х и у — Зх + 1, то прямые, служащие их графиками, не параллельны, и тем более не совпадают. Следовательно, указанные прямые пересекаются. Вообще, справедлива следующая теорема.  
<br>Вернемся еще раз к графикам линейных функций у = 2х- - 4 и у = 2х + 6, представленным на рисунке 51. Мы уже отмечали (в § 30), что эти две прямые параллельны прямой у = 2х, а значит, параллельны друг другу. Признаком параллельности служит равенство угловых коэффициентов (k = 2 для всех трех прямых: и для у = 2х, и для у = 2х - 4, и для у = 2х + 6). Если же угловые коэффициенты различны, как, например, у линейных функций у = 2х и у — Зх + 1, то прямые, служащие их графиками, не параллельны, и тем более не совпадают. Следовательно, указанные прямые пересекаются. Вообще, справедлива следующая теорема.  
Строка 19: Строка 19:
[[Image:09-06-56.jpg]]<br><br>Прямая I<sub>2</sub>, служащая графиком линейной функции [[Image:09-06-55.jpg]] , проведена на рисунке 53 через точки (0; 2) и (2; 1).  
[[Image:09-06-56.jpg]]<br><br>Прямая I<sub>2</sub>, служащая графиком линейной функции [[Image:09-06-55.jpg]] , проведена на рисунке 53 через точки (0; 2) и (2; 1).  
-
[[Image:09-06-57.jpg]]
+
[[Image:09-06-57.jpg]]  
<br>Прямые I<sub>1</sub> и I<sub>2</sub> пересекаются в точке (2; 1).  
<br>Прямые I<sub>1</sub> и I<sub>2</sub> пересекаются в точке (2; 1).  
-
б) Эта задача некорректна! В самом деле, линейные функции y = -3x + 1 и y = -3x + 5 имеют один и тот же угловой коэффициент (к = -3), значит, прямыеу =
+
б) Эта задача некорректна! В самом деле, линейные функции y = -3x + 1 и y = -3x + 5 имеют один и тот же угловой коэффициент (к = -3), значит, прямыеу =  
y = -3x + 1 и y = -3x + 5 параллельны, т. е. точки пересечения у них нет.  
y = -3x + 1 и y = -3x + 5 параллельны, т. е. точки пересечения у них нет.  
Строка 29: Строка 29:
'''Пример 2.''' Найти точку пересечения прямых  
'''Пример 2.''' Найти точку пересечения прямых  
-
y = 4x + 7 и y = -2 + 7<br>
+
y = 4x + 7 и y = -2 + 7<br>  
-
Решение. Здесь можно обойтись без чертежа. Будем рассуждать так.
+
Решение. Здесь можно обойтись без чертежа. Будем рассуждать так.  
Во-первых, угловые коэффициенты прямых различны (k<sub>1</sub> = 4, k<sub>2</sub> = - 2), значит, прямые пересекаются в одной точке. <br>Во-вторых, как одна, так и другая прямая проходит через точку (0; 7) (вы обратили внимание, что m<sub>1</sub> = m<sub>2</sub>= 7?).  
Во-первых, угловые коэффициенты прямых различны (k<sub>1</sub> = 4, k<sub>2</sub> = - 2), значит, прямые пересекаются в одной точке. <br>Во-вторых, как одна, так и другая прямая проходит через точку (0; 7) (вы обратили внимание, что m<sub>1</sub> = m<sub>2</sub>= 7?).  
Строка 37: Строка 37:
Следовательно, (0; 7) и есть искомая точка пересечения. (И Вообще, прямые [[Image:09-06-58.jpg]], пересекаются в точке(0; m). <br>Завершая главу 6, обратим внимание на характерную особенность математического языка: в нем отсутствует противопоставление между тем, что относится к алгебре, и тем, что относится к геометрии. Во многих фразах, как вы, наверное, заметили, одновременно встречаются элементы алгебраического и геометрического языков — составных частей единого математического языка. Так, мы говорим: точка 3, прямая х = 2, прямая у = -5, прямая у = 2х + 3, отрезок [3, 7], луч [-2, +°°] и т.п. А в § 31 мы получили, пожалуй, наиболее яркие образцы свободного оперирования алгебраическим и геометрическим языками в одном суждении — они представлены в приведенной таблице.  
Следовательно, (0; 7) и есть искомая точка пересечения. (И Вообще, прямые [[Image:09-06-58.jpg]], пересекаются в точке(0; m). <br>Завершая главу 6, обратим внимание на характерную особенность математического языка: в нем отсутствует противопоставление между тем, что относится к алгебре, и тем, что относится к геометрии. Во многих фразах, как вы, наверное, заметили, одновременно встречаются элементы алгебраического и геометрического языков — составных частей единого математического языка. Так, мы говорим: точка 3, прямая х = 2, прямая у = -5, прямая у = 2х + 3, отрезок [3, 7], луч [-2, +°°] и т.п. А в § 31 мы получили, пожалуй, наиболее яркие образцы свободного оперирования алгебраическим и геометрическим языками в одном суждении — они представлены в приведенной таблице.  
 +
<br>
 +
[[Image:09-06-59.jpg]]<br><br>
-
[[Image:09-06-59.jpg]]<br><br>
+
<br>  
 +
<sub>Видео по математике[[Математика|скачать]], домашнее задание, учителям и школьникам на помощь [[Гипермаркет знаний - первый в мире!|онлайн]]</sub><br>
-
<sub>Видео по математике[[Математика|скачать]], домашнее задание, учителям и школьникам на помощь [[Гипермаркет знаний - первый в мире!|онлайн]]</sub>
 
-
<br>
+
''А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений''
 +
 
  '''<u>Содержание урока</u>'''
  '''<u>Содержание урока</u>'''
-
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] конспект урока                      '''
+
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] конспект урока                      '''
-
  [[Image:1236084776 kr.jpg|10x10px]] опорный каркас   
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] опорный каркас   
-
  [[Image:1236084776 kr.jpg|10x10px]] презентация урока
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] презентация урока
-
  [[Image:1236084776 kr.jpg|10x10px]] акселеративные методы  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] акселеративные методы  
-
  [[Image:1236084776 kr.jpg|10x10px]] интерактивные технологии  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] интерактивные технологии  
   
   
  '''<u>Практика</u>'''
  '''<u>Практика</u>'''
-
  [[Image:1236084776 kr.jpg|10x10px]] задачи и упражнения  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] задачи и упражнения  
-
  [[Image:1236084776 kr.jpg|10x10px]] самопроверка
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] самопроверка
-
  [[Image:1236084776 kr.jpg|10x10px]] практикумы, тренинги, кейсы, квесты
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] практикумы, тренинги, кейсы, квесты
-
  [[Image:1236084776 kr.jpg|10x10px]] домашние задания
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] домашние задания
-
  [[Image:1236084776 kr.jpg|10x10px]] дискуссионные вопросы
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы
-
  [[Image:1236084776 kr.jpg|10x10px]] риторические вопросы от учеников
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников
-
 
+
  '''<u>Иллюстрации</u>'''
  '''<u>Иллюстрации</u>'''
-
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] аудио-, видеоклипы и мультимедиа '''
+
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа '''
-
  [[Image:1236084776 kr.jpg|10x10px]] фотографии, картинки  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фотографии, картинки  
-
  [[Image:1236084776 kr.jpg|10x10px]] графики, таблицы, схемы
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] графики, таблицы, схемы
-
  [[Image:1236084776 kr.jpg|10x10px]] юмор, анекдоты, приколы, комиксы
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] юмор, анекдоты, приколы, комиксы
-
  [[Image:1236084776 kr.jpg|10x10px]] притчи, поговорки, кроссворды, цитаты
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] притчи, поговорки, кроссворды, цитаты
   
   
  '''<u>Дополнения</u>'''
  '''<u>Дополнения</u>'''
-
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] рефераты'''
+
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] рефераты'''
-
  [[Image:1236084776 kr.jpg|10x10px]] статьи  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] статьи  
-
  [[Image:1236084776 kr.jpg|10x10px]] фишки для любознательных  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фишки для любознательных  
-
  [[Image:1236084776 kr.jpg|10x10px]] шпаргалки  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] шпаргалки  
-
  [[Image:1236084776 kr.jpg|10x10px]] учебники основные и дополнительные
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] учебники основные и дополнительные
-
  [[Image:1236084776 kr.jpg|10x10px]] словарь терминов                           
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] словарь терминов                           
-
  [[Image:1236084776 kr.jpg|10x10px]] прочие  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] прочие  
  '''<u></u>'''
  '''<u></u>'''
  <u>Совершенствование учебников и уроков
  <u>Совершенствование учебников и уроков
-
  </u>'''[[Image:1236084776 kr.jpg|10x10px]] исправление ошибок в учебнике'''
+
  </u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] исправление ошибок в учебнике'''
-
  [[Image:1236084776 kr.jpg|10x10px]] обновление фрагмента в учебнике  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обновление фрагмента в учебнике  
-
  [[Image:1236084776 kr.jpg|10x10px]] элементы новаторства на уроке  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке  
-
  [[Image:1236084776 kr.jpg|10x10px]] замена устаревших знаний новыми  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми  
-
 
+
  '''<u>Только для учителей</u>'''
  '''<u>Только для учителей</u>'''
-
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] идеальные уроки '''
+
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки '''
-
  [[Image:1236084776 kr.jpg|10x10px]] календарный план на год   
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] календарный план на год   
-
  [[Image:1236084776 kr.jpg|10x10px]] методические рекомендации   
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] методические рекомендации   
-
  [[Image:1236084776 kr.jpg|10x10px]] программы
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] программы
-
  [[Image:1236084776 kr.jpg|10x10px]] обсуждения
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обсуждения
   
   
   
   

Версия 09:01, 15 июня 2012

Гипермаркет знаний>>Математика>>Математика 7 класс>>Математика:Взаимное расположение графиков линейных функций




                                                      ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ГРАФИКОВ ЛИНЕЙНЫХ ФУНКЦИЙ


Вернемся еще раз к графикам линейных функций у = 2х- - 4 и у = 2х + 6, представленным на рисунке 51. Мы уже отмечали (в § 30), что эти две прямые параллельны прямой у = 2х, а значит, параллельны друг другу. Признаком параллельности служит равенство угловых коэффициентов (k = 2 для всех трех прямых: и для у = 2х, и для у = 2х - 4, и для у = 2х + 6). Если же угловые коэффициенты различны, как, например, у линейных функций у = 2х и у — Зх + 1, то прямые, служащие их графиками, не параллельны, и тем более не совпадают. Следовательно, указанные прямые пересекаются. Вообще, справедлива следующая теорема.

09-06-52.jpg

Пример 1. Найти точку пересечения прямых:

09-06-53.jpg

Р е ш е н и е. а) Для линейной функции у = 2х - 3 имеем:

09-06-54.jpg
Прямая I1, служащая графиком линейной функции у — 2х - 3, проведена на рисунке 53 через точки (0; - 3) и (2; 1).
Для линейной функции 09-06-55.jpg имеем:

09-06-56.jpg

Прямая I2, служащая графиком линейной функции 09-06-55.jpg , проведена на рисунке 53 через точки (0; 2) и (2; 1).

09-06-57.jpg


Прямые I1 и I2 пересекаются в точке (2; 1).

б) Эта задача некорректна! В самом деле, линейные функции y = -3x + 1 и y = -3x + 5 имеют один и тот же угловой коэффициент (к = -3), значит, прямыеу =

y = -3x + 1 и y = -3x + 5 параллельны, т. е. точки пересечения у них нет.

Пример 2. Найти точку пересечения прямых

y = 4x + 7 и y = -2 + 7

Решение. Здесь можно обойтись без чертежа. Будем рассуждать так.

Во-первых, угловые коэффициенты прямых различны (k1 = 4, k2 = - 2), значит, прямые пересекаются в одной точке.
Во-вторых, как одна, так и другая прямая проходит через точку (0; 7) (вы обратили внимание, что m1 = m2= 7?).

Следовательно, (0; 7) и есть искомая точка пересечения. (И Вообще, прямые 09-06-58.jpg, пересекаются в точке(0; m).
Завершая главу 6, обратим внимание на характерную особенность математического языка: в нем отсутствует противопоставление между тем, что относится к алгебре, и тем, что относится к геометрии. Во многих фразах, как вы, наверное, заметили, одновременно встречаются элементы алгебраического и геометрического языков — составных частей единого математического языка. Так, мы говорим: точка 3, прямая х = 2, прямая у = -5, прямая у = 2х + 3, отрезок [3, 7], луч [-2, +°°] и т.п. А в § 31 мы получили, пожалуй, наиболее яркие образцы свободного оперирования алгебраическим и геометрическим языками в одном суждении — они представлены в приведенной таблице.


09-06-59.jpg


Видео по математикескачать, домашнее задание, учителям и школьникам на помощь онлайн


А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений


Содержание урока
1236084776 kr.jpg конспект урока                       
1236084776 kr.jpg опорный каркас  
1236084776 kr.jpg презентация урока
1236084776 kr.jpg акселеративные методы 
1236084776 kr.jpg интерактивные технологии 

Практика
1236084776 kr.jpg задачи и упражнения 
1236084776 kr.jpg самопроверка
1236084776 kr.jpg практикумы, тренинги, кейсы, квесты
1236084776 kr.jpg домашние задания
1236084776 kr.jpg дискуссионные вопросы
1236084776 kr.jpg риторические вопросы от учеников

Иллюстрации
1236084776 kr.jpg аудио-, видеоклипы и мультимедиа 
1236084776 kr.jpg фотографии, картинки 
1236084776 kr.jpg графики, таблицы, схемы
1236084776 kr.jpg юмор, анекдоты, приколы, комиксы
1236084776 kr.jpg притчи, поговорки, кроссворды, цитаты

Дополнения
1236084776 kr.jpg рефераты
1236084776 kr.jpg статьи 
1236084776 kr.jpg фишки для любознательных 
1236084776 kr.jpg шпаргалки 
1236084776 kr.jpg учебники основные и дополнительные
1236084776 kr.jpg словарь терминов                          
1236084776 kr.jpg прочие 

Совершенствование учебников и уроков
1236084776 kr.jpg исправление ошибок в учебнике
1236084776 kr.jpg обновление фрагмента в учебнике 
1236084776 kr.jpg элементы новаторства на уроке 
1236084776 kr.jpg замена устаревших знаний новыми 

Только для учителей
1236084776 kr.jpg идеальные уроки 
1236084776 kr.jpg календарный план на год  
1236084776 kr.jpg методические рекомендации  
1236084776 kr.jpg программы
1236084776 kr.jpg обсуждения


Интегрированные уроки


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.