|
|
Строка 5: |
Строка 5: |
| <br> | | <br> |
| | | |
| + | <br> |
| | | |
| + | <br> |
| | | |
- | | + | ''' ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ГРАФИКОВ ЛИНЕЙНЫХ ФУНКЦИЙ ''' |
- | | + | |
- | ''' ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ГРАФИКОВ ЛИНЕЙНЫХ ФУНКЦИЙ ''' | + | |
| | | |
| <br>Вернемся еще раз к графикам линейных функций у = 2х- - 4 и у = 2х + 6, представленным на рисунке 51. Мы уже отмечали (в § 30), что эти две прямые параллельны прямой у = 2х, а значит, параллельны друг другу. Признаком параллельности служит равенство угловых коэффициентов (k = 2 для всех трех прямых: и для у = 2х, и для у = 2х - 4, и для у = 2х + 6). Если же угловые коэффициенты различны, как, например, у линейных функций у = 2х и у — Зх + 1, то прямые, служащие их графиками, не параллельны, и тем более не совпадают. Следовательно, указанные прямые пересекаются. Вообще, справедлива следующая теорема. | | <br>Вернемся еще раз к графикам линейных функций у = 2х- - 4 и у = 2х + 6, представленным на рисунке 51. Мы уже отмечали (в § 30), что эти две прямые параллельны прямой у = 2х, а значит, параллельны друг другу. Признаком параллельности служит равенство угловых коэффициентов (k = 2 для всех трех прямых: и для у = 2х, и для у = 2х - 4, и для у = 2х + 6). Если же угловые коэффициенты различны, как, например, у линейных функций у = 2х и у — Зх + 1, то прямые, служащие их графиками, не параллельны, и тем более не совпадают. Следовательно, указанные прямые пересекаются. Вообще, справедлива следующая теорема. |
Строка 19: |
Строка 19: |
| [[Image:09-06-56.jpg]]<br><br>Прямая I<sub>2</sub>, служащая графиком линейной функции [[Image:09-06-55.jpg]] , проведена на рисунке 53 через точки (0; 2) и (2; 1). | | [[Image:09-06-56.jpg]]<br><br>Прямая I<sub>2</sub>, служащая графиком линейной функции [[Image:09-06-55.jpg]] , проведена на рисунке 53 через точки (0; 2) и (2; 1). |
| | | |
- | [[Image:09-06-57.jpg]] | + | [[Image:09-06-57.jpg]] |
| | | |
| <br>Прямые I<sub>1</sub> и I<sub>2</sub> пересекаются в точке (2; 1). | | <br>Прямые I<sub>1</sub> и I<sub>2</sub> пересекаются в точке (2; 1). |
| | | |
- | б) Эта задача некорректна! В самом деле, линейные функции y = -3x + 1 и y = -3x + 5 имеют один и тот же угловой коэффициент (к = -3), значит, прямыеу = | + | б) Эта задача некорректна! В самом деле, линейные функции y = -3x + 1 и y = -3x + 5 имеют один и тот же угловой коэффициент (к = -3), значит, прямыеу = |
| | | |
| y = -3x + 1 и y = -3x + 5 параллельны, т. е. точки пересечения у них нет. | | y = -3x + 1 и y = -3x + 5 параллельны, т. е. точки пересечения у них нет. |
Строка 29: |
Строка 29: |
| '''Пример 2.''' Найти точку пересечения прямых | | '''Пример 2.''' Найти точку пересечения прямых |
| | | |
- | y = 4x + 7 и y = -2 + 7<br> | + | y = 4x + 7 и y = -2 + 7<br> |
| | | |
- | Решение. Здесь можно обойтись без чертежа. Будем рассуждать так. | + | Решение. Здесь можно обойтись без чертежа. Будем рассуждать так. |
| | | |
| Во-первых, угловые коэффициенты прямых различны (k<sub>1</sub> = 4, k<sub>2</sub> = - 2), значит, прямые пересекаются в одной точке. <br>Во-вторых, как одна, так и другая прямая проходит через точку (0; 7) (вы обратили внимание, что m<sub>1</sub> = m<sub>2</sub>= 7?). | | Во-первых, угловые коэффициенты прямых различны (k<sub>1</sub> = 4, k<sub>2</sub> = - 2), значит, прямые пересекаются в одной точке. <br>Во-вторых, как одна, так и другая прямая проходит через точку (0; 7) (вы обратили внимание, что m<sub>1</sub> = m<sub>2</sub>= 7?). |
Строка 37: |
Строка 37: |
| Следовательно, (0; 7) и есть искомая точка пересечения. (И Вообще, прямые [[Image:09-06-58.jpg]], пересекаются в точке(0; m). <br>Завершая главу 6, обратим внимание на характерную особенность математического языка: в нем отсутствует противопоставление между тем, что относится к алгебре, и тем, что относится к геометрии. Во многих фразах, как вы, наверное, заметили, одновременно встречаются элементы алгебраического и геометрического языков — составных частей единого математического языка. Так, мы говорим: точка 3, прямая х = 2, прямая у = -5, прямая у = 2х + 3, отрезок [3, 7], луч [-2, +°°] и т.п. А в § 31 мы получили, пожалуй, наиболее яркие образцы свободного оперирования алгебраическим и геометрическим языками в одном суждении — они представлены в приведенной таблице. | | Следовательно, (0; 7) и есть искомая точка пересечения. (И Вообще, прямые [[Image:09-06-58.jpg]], пересекаются в точке(0; m). <br>Завершая главу 6, обратим внимание на характерную особенность математического языка: в нем отсутствует противопоставление между тем, что относится к алгебре, и тем, что относится к геометрии. Во многих фразах, как вы, наверное, заметили, одновременно встречаются элементы алгебраического и геометрического языков — составных частей единого математического языка. Так, мы говорим: точка 3, прямая х = 2, прямая у = -5, прямая у = 2х + 3, отрезок [3, 7], луч [-2, +°°] и т.п. А в § 31 мы получили, пожалуй, наиболее яркие образцы свободного оперирования алгебраическим и геометрическим языками в одном суждении — они представлены в приведенной таблице. |
| | | |
| + | <br> |
| | | |
| + | [[Image:09-06-59.jpg]]<br><br> |
| | | |
- | [[Image:09-06-59.jpg]]<br><br>
| + | <br> |
| | | |
| + | <sub>Видео по математике[[Математика|скачать]], домашнее задание, учителям и школьникам на помощь [[Гипермаркет знаний - первый в мире!|онлайн]]</sub><br> |
| | | |
| | | |
- | <sub>Видео по математике[[Математика|скачать]], домашнее задание, учителям и школьникам на помощь [[Гипермаркет знаний - первый в мире!|онлайн]]</sub>
| |
| | | |
- | <br>
| + | ''А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений'' |
| + | |
| | | |
| '''<u>Содержание урока</u>''' | | '''<u>Содержание урока</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] конспект урока ''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] конспект урока ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] опорный каркас | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] опорный каркас |
- | [[Image:1236084776 kr.jpg|10x10px]] презентация урока | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] презентация урока |
- | [[Image:1236084776 kr.jpg|10x10px]] акселеративные методы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] акселеративные методы |
- | [[Image:1236084776 kr.jpg|10x10px]] интерактивные технологии | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] интерактивные технологии |
| | | |
| '''<u>Практика</u>''' | | '''<u>Практика</u>''' |
- | [[Image:1236084776 kr.jpg|10x10px]] задачи и упражнения | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] задачи и упражнения |
- | [[Image:1236084776 kr.jpg|10x10px]] самопроверка | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] самопроверка |
- | [[Image:1236084776 kr.jpg|10x10px]] практикумы, тренинги, кейсы, квесты | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] практикумы, тренинги, кейсы, квесты |
- | [[Image:1236084776 kr.jpg|10x10px]] домашние задания | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] домашние задания |
- | [[Image:1236084776 kr.jpg|10x10px]] дискуссионные вопросы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы |
- | [[Image:1236084776 kr.jpg|10x10px]] риторические вопросы от учеников | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников |
- |
| + | |
| '''<u>Иллюстрации</u>''' | | '''<u>Иллюстрации</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] аудио-, видеоклипы и мультимедиа ''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] фотографии, картинки | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фотографии, картинки |
- | [[Image:1236084776 kr.jpg|10x10px]] графики, таблицы, схемы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] графики, таблицы, схемы |
- | [[Image:1236084776 kr.jpg|10x10px]] юмор, анекдоты, приколы, комиксы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] юмор, анекдоты, приколы, комиксы |
- | [[Image:1236084776 kr.jpg|10x10px]] притчи, поговорки, кроссворды, цитаты | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] притчи, поговорки, кроссворды, цитаты |
| | | |
| '''<u>Дополнения</u>''' | | '''<u>Дополнения</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] рефераты''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] рефераты''' |
- | [[Image:1236084776 kr.jpg|10x10px]] статьи | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] статьи |
- | [[Image:1236084776 kr.jpg|10x10px]] фишки для любознательных | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фишки для любознательных |
- | [[Image:1236084776 kr.jpg|10x10px]] шпаргалки | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] шпаргалки |
- | [[Image:1236084776 kr.jpg|10x10px]] учебники основные и дополнительные | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] учебники основные и дополнительные |
- | [[Image:1236084776 kr.jpg|10x10px]] словарь терминов | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] словарь терминов |
- | [[Image:1236084776 kr.jpg|10x10px]] прочие | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] прочие |
| '''<u></u>''' | | '''<u></u>''' |
| <u>Совершенствование учебников и уроков | | <u>Совершенствование учебников и уроков |
- | </u>'''[[Image:1236084776 kr.jpg|10x10px]] исправление ошибок в учебнике''' | + | </u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] исправление ошибок в учебнике''' |
- | [[Image:1236084776 kr.jpg|10x10px]] обновление фрагмента в учебнике | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обновление фрагмента в учебнике |
- | [[Image:1236084776 kr.jpg|10x10px]] элементы новаторства на уроке | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке |
- | [[Image:1236084776 kr.jpg|10x10px]] замена устаревших знаний новыми | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми |
- |
| + | |
| '''<u>Только для учителей</u>''' | | '''<u>Только для учителей</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] идеальные уроки ''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] календарный план на год | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] календарный план на год |
- | [[Image:1236084776 kr.jpg|10x10px]] методические рекомендации | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] методические рекомендации |
- | [[Image:1236084776 kr.jpg|10x10px]] программы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] программы |
- | [[Image:1236084776 kr.jpg|10x10px]] обсуждения | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обсуждения |
| | | |
| | | |
Версия 09:01, 15 июня 2012
Гипермаркет знаний>>Математика>>Математика 7 класс>>Математика:Взаимное расположение графиков линейных функций
ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ГРАФИКОВ ЛИНЕЙНЫХ ФУНКЦИЙ
Вернемся еще раз к графикам линейных функций у = 2х- - 4 и у = 2х + 6, представленным на рисунке 51. Мы уже отмечали (в § 30), что эти две прямые параллельны прямой у = 2х, а значит, параллельны друг другу. Признаком параллельности служит равенство угловых коэффициентов (k = 2 для всех трех прямых: и для у = 2х, и для у = 2х - 4, и для у = 2х + 6). Если же угловые коэффициенты различны, как, например, у линейных функций у = 2х и у — Зх + 1, то прямые, служащие их графиками, не параллельны, и тем более не совпадают. Следовательно, указанные прямые пересекаются. Вообще, справедлива следующая теорема.

Пример 1. Найти точку пересечения прямых:

Р е ш е н и е. а) Для линейной функции у = 2х - 3 имеем:
 Прямая I1, служащая графиком линейной функции у — 2х - 3, проведена на рисунке 53 через точки (0; - 3) и (2; 1). Для линейной функции имеем:

Прямая I2, служащая графиком линейной функции , проведена на рисунке 53 через точки (0; 2) и (2; 1).
Прямые I1 и I2 пересекаются в точке (2; 1).
б) Эта задача некорректна! В самом деле, линейные функции y = -3x + 1 и y = -3x + 5 имеют один и тот же угловой коэффициент (к = -3), значит, прямыеу =
y = -3x + 1 и y = -3x + 5 параллельны, т. е. точки пересечения у них нет.
Пример 2. Найти точку пересечения прямых
y = 4x + 7 и y = -2 + 7
Решение. Здесь можно обойтись без чертежа. Будем рассуждать так.
Во-первых, угловые коэффициенты прямых различны (k1 = 4, k2 = - 2), значит, прямые пересекаются в одной точке. Во-вторых, как одна, так и другая прямая проходит через точку (0; 7) (вы обратили внимание, что m1 = m2= 7?).
Следовательно, (0; 7) и есть искомая точка пересечения. (И Вообще, прямые , пересекаются в точке(0; m). Завершая главу 6, обратим внимание на характерную особенность математического языка: в нем отсутствует противопоставление между тем, что относится к алгебре, и тем, что относится к геометрии. Во многих фразах, как вы, наверное, заметили, одновременно встречаются элементы алгебраического и геометрического языков — составных частей единого математического языка. Так, мы говорим: точка 3, прямая х = 2, прямая у = -5, прямая у = 2х + 3, отрезок [3, 7], луч [-2, +°°] и т.п. А в § 31 мы получили, пожалуй, наиболее яркие образцы свободного оперирования алгебраическим и геометрическим языками в одном суждении — они представлены в приведенной таблице.

Видео по математикескачать, домашнее задание, учителям и школьникам на помощь онлайн
А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений
Содержание урока
конспект урока
опорный каркас
презентация урока
акселеративные методы
интерактивные технологии
Практика
задачи и упражнения
самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников
Иллюстрации
аудио-, видеоклипы и мультимедиа
фотографии, картинки
графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты
Дополнения
рефераты
статьи
фишки для любознательных
шпаргалки
учебники основные и дополнительные
словарь терминов
прочие
Совершенствование учебников и уроков
исправление ошибок в учебнике
обновление фрагмента в учебнике
элементы новаторства на уроке
замена устаревших знаний новыми
Только для учителей
идеальные уроки
календарный план на год
методические рекомендации
программы
обсуждения
Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
|