KNOWLEDGE HYPERMARKET


Обратная теорема
(Создана новая страница размером <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, ...)
Строка 1: Строка 1:
-
<metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 7 класс, Алгебра, урок, на Тему, Обратная теорема</metakeywords>  
+
<metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 7 класс, Алгебра, урок, на Тему, Обратная теорема, равнобедренный треугольник, Второй признак равенства треугольников, вертикальные углы</metakeywords>  
'''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]&gt;&gt;[[Математика|Математика]]&gt;&gt;[[Математика 7 класс|Математика 7 класс]]&gt;&gt;Математика:Обратная теорема'''  
'''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]&gt;&gt;[[Математика|Математика]]&gt;&gt;[[Математика 7 класс|Математика 7 класс]]&gt;&gt;Математика:Обратная теорема'''  
-
'''<br>'''
+
'''<br>'''  
-
'''&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; ОБРАТНАЯ ТЕОРЕМА'''
+
'''&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; '''[[Обратная теорема. Полные уроки|'''Обратная теорема''']]
-
<br>Теорема 3.4 (признак равнобедренного треугольника). '''''Если в треугольнике два угла равны, то он равнобедренный.'''''
+
<br>Теорема 3.4 (признак равнобедренного треугольника). Если в треугольнике два угла равны, то он равнобедренный.  
-
Доказательство. Пусть ABC— треугольник, в котором Z[[Image:20-06-61.jpg]]A = [[Image:20-06-61.jpg]]B (рис. 50). Докажем, что он равнобедренный с основанием АВ.
+
Доказательство. Пусть ABC— треугольник, в котором Z[[Image:20-06-61.jpg]]A = [[Image:20-06-61.jpg]]B (рис. 50). Докажем, что он '''[[Рівнобедрений трикутник, його властивості та ознаки|равнобедренный]]''' с основанием АВ.  
 +
<br>
 +
[[Image:21-06-6.jpg|240px|Равнобедренный треугольник]]
-
[[Image:21-06-6.jpg]]
+
<br>
 +
Треугольник ABC равен треугольнику ВАС по '''[[Второй признак равенства треугольников. Полные уроки|второму признаку]]''' равенства&nbsp;&nbsp; треугольников.&nbsp;&nbsp; Действительно, АВ=ВА,[[Image:20-06-61.jpg|Угол]]B=[[Image:20-06-61.jpg|Угол]]A, [[Image:20-06-61.jpg|Угол]]A= [[Image:20-06-61.jpg|Угол]]B. Из равенства треугольников следует, что АС = ВС. Значит, по определению треугольник ABC равнобедренный. Теорема доказана.
 +
Теорема 3.4 называется обратной теореме 3.3. Заключение теоремы 3.3 является условием теоремы 3.4. А условие теоремы 3.3 является заключением теоремы 3.4. Не всякая '''[[Теоремы и доказательства. Полные уроки|теорема]]''' имеет обратную, т. е. если данная теорема верна, то обратная теорема может быть неверна. Поясним это на примере теоремы о '''[[Задачі до уроку на тему «Вертикальні кути, їх властивості»|вертикальных углах]]'''. Эту теорему можно сформулировать так: если два угла вертикальные, то они равны. Обратная ей теорема была бы такой: если два угла равны, то они вертикальные. А это, конечно, неверно. Два равных угла вовсе не обязаны быть вертикальными.
-
Треугольник ABC равен треугольнику ВАС по второму признаку равенства&nbsp;&nbsp; треугольников.&nbsp;&nbsp; Действительно, АВ=ВА,[[Image:20-06-61.jpg]]B=[[Image:20-06-61.jpg]]A, [[Image:20-06-61.jpg]]A= [[Image:20-06-61.jpg]]B. Из равенства треугольников следует, что АС = ВС. Значит, по определению треугольник ABC равнобедренный. Теорема доказана.
+
Задача (16). Сформулируйте и докажите теорему, обратную утверждению задачи 12.  
-
Теорема 3.4 называется обратной теореме 3.3. Заключение теоремы 3.3 является условием теоремы 3.4. А условие теоремы 3.3 является заключением теоремы 3.4. Не всякая теорема имеет обратную, т. е. если данная теорема верна, то обратная теорема может быть неверна. Поясним это на примере теоремы о вертикальных углах. Эту теорему можно сформулировать так: если два угла вертикальные, то они равны. Обратная ей теорема была бы такой: если два угла равны, то они вертикальные. А это, конечно, неверно. Два равных угла вовсе не обязаны быть вертикальными.
+
Решение. В задаче 12 условие состоит в том, что треугольник равносторонний, а заключение — в том, что все углы треугольника равны. Поэтому обратная теорема должна формулироваться так: если у треугольника все углы равны, то он равносторонний.  
-
Задача (16). Сформулируйте и докажите теорему, обратную утверждению задачи 12.
+
Докажем эту теорему. Пусть АВС — треугольник с равными углами: [[Image:20-06-61.jpg|Угол]]A=[[Image:20-06-61.jpg|Угол]]В=[[Image:20-06-61.jpg|Угол]]C. Так как [[Image:20-06-61.jpg|Угол]]A=[[Image:20-06-61.jpg|Угол]]В, то по теореме 3.4 АС = СВ. Так как [[Image:20-06-61.jpg|Угол]]В=[[Image:20-06-61.jpg|Угол]]C, то по теореме 3.4 АС = АВ. Таким образом, АВ=АС = СВ, т. е. все стороны треугольника равны. Значит, по определению треугольник АБС равносторонний.  
-
Решение. В задаче 12 условие состоит в том, что треугольник равносторонний, а заключение — в том, что все углы треугольника равны. Поэтому обратная теорема должна формулироваться так: если у треугольника все углы равны, то он равносторонний.
+
<br> ''А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений'' <br>
-
Докажем эту теорему. Пусть АВС — треугольник с равными углами: [[Image:20-06-61.jpg]]A=[[Image:20-06-61.jpg]]В=[[Image:20-06-61.jpg]]C. Так как [[Image:20-06-61.jpg]]A=[[Image:20-06-61.jpg]]В, то по теореме 3.4 АС = СВ. Так как [[Image:20-06-61.jpg]]В=[[Image:20-06-61.jpg]]C, то по теореме 3.4 АС = АВ. Таким образом, АВ=АС = СВ, т. е. все стороны треугольника равны. Значит, по определению треугольник АБС равносторонний.
 
-
<br> ''А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений'' <br>  
+
[http://xvatit.com/relax/fun-videos/  '''<sub>Видео</sub>''']<sub>по математике [[Математика|скачать]], домашнее задание, учителям и школьникам на помощь [[Гипермаркет знаний - первый в мире!|онлайн]]</sub>
 +
 
-
<sub>Календарно-тематическое планирование по математике, задачи и ответы школьнику [[Гипермаркет знаний - первый в мире!|онлайн]], курсы учителю по математике [[Математика|скачать]]</sub> <br>
 
  '''<u>Содержание урока</u>'''
  '''<u>Содержание урока</u>'''
-
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] конспект урока                      '''
+
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] конспект урока                      '''
-
  [[Image:1236084776 kr.jpg|10x10px]] опорный каркас   
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] опорный каркас   
-
  [[Image:1236084776 kr.jpg|10x10px]] презентация урока
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] презентация урока
-
  [[Image:1236084776 kr.jpg|10x10px]] акселеративные методы  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] акселеративные методы  
-
  [[Image:1236084776 kr.jpg|10x10px]] интерактивные технологии  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] интерактивные технологии  
   
   
  '''<u>Практика</u>'''
  '''<u>Практика</u>'''
-
  [[Image:1236084776 kr.jpg|10x10px]] задачи и упражнения  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] задачи и упражнения  
-
  [[Image:1236084776 kr.jpg|10x10px]] самопроверка
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] самопроверка
-
  [[Image:1236084776 kr.jpg|10x10px]] практикумы, тренинги, кейсы, квесты
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] практикумы, тренинги, кейсы, квесты
-
  [[Image:1236084776 kr.jpg|10x10px]] домашние задания
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] домашние задания
-
  [[Image:1236084776 kr.jpg|10x10px]] дискуссионные вопросы
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы
-
  [[Image:1236084776 kr.jpg|10x10px]] риторические вопросы от учеников
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников
-
 
+
  '''<u>Иллюстрации</u>'''
  '''<u>Иллюстрации</u>'''
-
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] аудио-, видеоклипы и мультимедиа '''
+
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа '''
-
  [[Image:1236084776 kr.jpg|10x10px]] фотографии, картинки  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фотографии, картинки  
-
  [[Image:1236084776 kr.jpg|10x10px]] графики, таблицы, схемы
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] графики, таблицы, схемы
-
  [[Image:1236084776 kr.jpg|10x10px]] юмор, анекдоты, приколы, комиксы
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] юмор, анекдоты, приколы, комиксы
-
  [[Image:1236084776 kr.jpg|10x10px]] притчи, поговорки, кроссворды, цитаты
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] притчи, поговорки, кроссворды, цитаты
   
   
  '''<u>Дополнения</u>'''
  '''<u>Дополнения</u>'''
-
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] рефераты'''
+
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] рефераты'''
-
  [[Image:1236084776 kr.jpg|10x10px]] статьи  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] статьи  
-
  [[Image:1236084776 kr.jpg|10x10px]] фишки для любознательных  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фишки для любознательных  
-
  [[Image:1236084776 kr.jpg|10x10px]] шпаргалки  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] шпаргалки  
-
  [[Image:1236084776 kr.jpg|10x10px]] учебники основные и дополнительные
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] учебники основные и дополнительные
-
  [[Image:1236084776 kr.jpg|10x10px]] словарь терминов                           
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] словарь терминов                           
-
  [[Image:1236084776 kr.jpg|10x10px]] прочие  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] прочие  
  '''<u></u>'''
  '''<u></u>'''
  <u>Совершенствование учебников и уроков
  <u>Совершенствование учебников и уроков
-
  </u>'''[[Image:1236084776 kr.jpg|10x10px]] исправление ошибок в учебнике'''
+
  </u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] исправление ошибок в учебнике'''
-
  [[Image:1236084776 kr.jpg|10x10px]] обновление фрагмента в учебнике  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обновление фрагмента в учебнике  
-
  [[Image:1236084776 kr.jpg|10x10px]] элементы новаторства на уроке  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке  
-
  [[Image:1236084776 kr.jpg|10x10px]] замена устаревших знаний новыми  
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми  
-
 
+
  '''<u>Только для учителей</u>'''
  '''<u>Только для учителей</u>'''
-
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] идеальные уроки '''
+
  <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки '''
-
  [[Image:1236084776 kr.jpg|10x10px]] календарный план на год   
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] календарный план на год   
-
  [[Image:1236084776 kr.jpg|10x10px]] методические рекомендации   
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] методические рекомендации   
-
  [[Image:1236084776 kr.jpg|10x10px]] программы
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] программы
-
  [[Image:1236084776 kr.jpg|10x10px]] обсуждения
+
  [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обсуждения
   
   
   
   

Версия 18:22, 17 июня 2012

Гипермаркет знаний>>Математика>>Математика 7 класс>>Математика:Обратная теорема


                                                   Обратная теорема


Теорема 3.4 (признак равнобедренного треугольника). Если в треугольнике два угла равны, то он равнобедренный.

Доказательство. Пусть ABC— треугольник, в котором Z20-06-61.jpgA = 20-06-61.jpgB (рис. 50). Докажем, что он равнобедренный с основанием АВ.


Равнобедренный треугольник


Треугольник ABC равен треугольнику ВАС по второму признаку равенства   треугольников.   Действительно, АВ=ВА,УголB=УголA, УголA= УголB. Из равенства треугольников следует, что АС = ВС. Значит, по определению треугольник ABC равнобедренный. Теорема доказана.

Теорема 3.4 называется обратной теореме 3.3. Заключение теоремы 3.3 является условием теоремы 3.4. А условие теоремы 3.3 является заключением теоремы 3.4. Не всякая теорема имеет обратную, т. е. если данная теорема верна, то обратная теорема может быть неверна. Поясним это на примере теоремы о вертикальных углах. Эту теорему можно сформулировать так: если два угла вертикальные, то они равны. Обратная ей теорема была бы такой: если два угла равны, то они вертикальные. А это, конечно, неверно. Два равных угла вовсе не обязаны быть вертикальными.

Задача (16). Сформулируйте и докажите теорему, обратную утверждению задачи 12.

Решение. В задаче 12 условие состоит в том, что треугольник равносторонний, а заключение — в том, что все углы треугольника равны. Поэтому обратная теорема должна формулироваться так: если у треугольника все углы равны, то он равносторонний.

Докажем эту теорему. Пусть АВС — треугольник с равными углами: УголA=УголВ=УголC. Так как УголA=УголВ, то по теореме 3.4 АС = СВ. Так как УголВ=УголC, то по теореме 3.4 АС = АВ. Таким образом, АВ=АС = СВ, т. е. все стороны треугольника равны. Значит, по определению треугольник АБС равносторонний.


А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений


Видеопо математике скачать, домашнее задание, учителям и школьникам на помощь онлайн


Содержание урока
1236084776 kr.jpg конспект урока                       
1236084776 kr.jpg опорный каркас  
1236084776 kr.jpg презентация урока
1236084776 kr.jpg акселеративные методы 
1236084776 kr.jpg интерактивные технологии 

Практика
1236084776 kr.jpg задачи и упражнения 
1236084776 kr.jpg самопроверка
1236084776 kr.jpg практикумы, тренинги, кейсы, квесты
1236084776 kr.jpg домашние задания
1236084776 kr.jpg дискуссионные вопросы
1236084776 kr.jpg риторические вопросы от учеников

Иллюстрации
1236084776 kr.jpg аудио-, видеоклипы и мультимедиа 
1236084776 kr.jpg фотографии, картинки 
1236084776 kr.jpg графики, таблицы, схемы
1236084776 kr.jpg юмор, анекдоты, приколы, комиксы
1236084776 kr.jpg притчи, поговорки, кроссворды, цитаты

Дополнения
1236084776 kr.jpg рефераты
1236084776 kr.jpg статьи 
1236084776 kr.jpg фишки для любознательных 
1236084776 kr.jpg шпаргалки 
1236084776 kr.jpg учебники основные и дополнительные
1236084776 kr.jpg словарь терминов                          
1236084776 kr.jpg прочие 

Совершенствование учебников и уроков
1236084776 kr.jpg исправление ошибок в учебнике
1236084776 kr.jpg обновление фрагмента в учебнике 
1236084776 kr.jpg элементы новаторства на уроке 
1236084776 kr.jpg замена устаревших знаний новыми 

Только для учителей
1236084776 kr.jpg идеальные уроки 
1236084776 kr.jpg календарный план на год  
1236084776 kr.jpg методические рекомендации  
1236084776 kr.jpg программы
1236084776 kr.jpg обсуждения


Интегрированные уроки


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.