|
|
Строка 1: |
Строка 1: |
- | <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 7 класс, Алгебра, урок, на Тему, Обратная теорема</metakeywords> | + | <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 7 класс, Алгебра, урок, на Тему, Обратная теорема, равнобедренный треугольник, Второй признак равенства треугольников, вертикальные углы</metakeywords> |
| | | |
| '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 7 класс|Математика 7 класс]]>>Математика:Обратная теорема''' | | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 7 класс|Математика 7 класс]]>>Математика:Обратная теорема''' |
| | | |
- | '''<br>''' | + | '''<br>''' |
| | | |
- | ''' ОБРАТНАЯ ТЕОРЕМА''' | + | ''' '''[[Обратная теорема. Полные уроки|'''Обратная теорема''']] |
| | | |
- | <br>Теорема 3.4 (признак равнобедренного треугольника). '''''Если в треугольнике два угла равны, то он равнобедренный.''''' | + | <br>Теорема 3.4 (признак равнобедренного треугольника). Если в треугольнике два угла равны, то он равнобедренный. |
| | | |
- | Доказательство. Пусть ABC— треугольник, в котором Z[[Image:20-06-61.jpg]]A = [[Image:20-06-61.jpg]]B (рис. 50). Докажем, что он равнобедренный с основанием АВ. | + | Доказательство. Пусть ABC— треугольник, в котором Z[[Image:20-06-61.jpg]]A = [[Image:20-06-61.jpg]]B (рис. 50). Докажем, что он '''[[Рівнобедрений трикутник, його властивості та ознаки|равнобедренный]]''' с основанием АВ. |
| | | |
| + | <br> |
| | | |
| + | [[Image:21-06-6.jpg|240px|Равнобедренный треугольник]] |
| | | |
- | [[Image:21-06-6.jpg]]
| + | <br> |
| | | |
| + | Треугольник ABC равен треугольнику ВАС по '''[[Второй признак равенства треугольников. Полные уроки|второму признаку]]''' равенства треугольников. Действительно, АВ=ВА,[[Image:20-06-61.jpg|Угол]]B=[[Image:20-06-61.jpg|Угол]]A, [[Image:20-06-61.jpg|Угол]]A= [[Image:20-06-61.jpg|Угол]]B. Из равенства треугольников следует, что АС = ВС. Значит, по определению треугольник ABC равнобедренный. Теорема доказана. |
| | | |
| + | Теорема 3.4 называется обратной теореме 3.3. Заключение теоремы 3.3 является условием теоремы 3.4. А условие теоремы 3.3 является заключением теоремы 3.4. Не всякая '''[[Теоремы и доказательства. Полные уроки|теорема]]''' имеет обратную, т. е. если данная теорема верна, то обратная теорема может быть неверна. Поясним это на примере теоремы о '''[[Задачі до уроку на тему «Вертикальні кути, їх властивості»|вертикальных углах]]'''. Эту теорему можно сформулировать так: если два угла вертикальные, то они равны. Обратная ей теорема была бы такой: если два угла равны, то они вертикальные. А это, конечно, неверно. Два равных угла вовсе не обязаны быть вертикальными. |
| | | |
- | Треугольник ABC равен треугольнику ВАС по второму признаку равенства треугольников. Действительно, АВ=ВА,[[Image:20-06-61.jpg]]B=[[Image:20-06-61.jpg]]A, [[Image:20-06-61.jpg]]A= [[Image:20-06-61.jpg]]B. Из равенства треугольников следует, что АС = ВС. Значит, по определению треугольник ABC равнобедренный. Теорема доказана.
| + | Задача (16). Сформулируйте и докажите теорему, обратную утверждению задачи 12. |
| | | |
- | Теорема 3.4 называется обратной теореме 3.3. Заключение теоремы 3.3 является условием теоремы 3.4. А условие теоремы 3.3 является заключением теоремы 3.4. Не всякая теорема имеет обратную, т. е. если данная теорема верна, то обратная теорема может быть неверна. Поясним это на примере теоремы о вертикальных углах. Эту теорему можно сформулировать так: если два угла вертикальные, то они равны. Обратная ей теорема была бы такой: если два угла равны, то они вертикальные. А это, конечно, неверно. Два равных угла вовсе не обязаны быть вертикальными.
| + | Решение. В задаче 12 условие состоит в том, что треугольник равносторонний, а заключение — в том, что все углы треугольника равны. Поэтому обратная теорема должна формулироваться так: если у треугольника все углы равны, то он равносторонний. |
| | | |
- | Задача (16). Сформулируйте и докажите теорему, обратную утверждению задачи 12.
| + | Докажем эту теорему. Пусть АВС — треугольник с равными углами: [[Image:20-06-61.jpg|Угол]]A=[[Image:20-06-61.jpg|Угол]]В=[[Image:20-06-61.jpg|Угол]]C. Так как [[Image:20-06-61.jpg|Угол]]A=[[Image:20-06-61.jpg|Угол]]В, то по теореме 3.4 АС = СВ. Так как [[Image:20-06-61.jpg|Угол]]В=[[Image:20-06-61.jpg|Угол]]C, то по теореме 3.4 АС = АВ. Таким образом, АВ=АС = СВ, т. е. все стороны треугольника равны. Значит, по определению треугольник АБС равносторонний. |
| | | |
- | Решение. В задаче 12 условие состоит в том, что треугольник равносторонний, а заключение — в том, что все углы треугольника равны. Поэтому обратная теорема должна формулироваться так: если у треугольника все углы равны, то он равносторонний.
| + | <br> ''А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений'' <br> |
| | | |
- | Докажем эту теорему. Пусть АВС — треугольник с равными углами: [[Image:20-06-61.jpg]]A=[[Image:20-06-61.jpg]]В=[[Image:20-06-61.jpg]]C. Так как [[Image:20-06-61.jpg]]A=[[Image:20-06-61.jpg]]В, то по теореме 3.4 АС = СВ. Так как [[Image:20-06-61.jpg]]В=[[Image:20-06-61.jpg]]C, то по теореме 3.4 АС = АВ. Таким образом, АВ=АС = СВ, т. е. все стороны треугольника равны. Значит, по определению треугольник АБС равносторонний.
| |
| | | |
- | <br> ''А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений'' <br> | + | [http://xvatit.com/relax/fun-videos/ '''<sub>Видео</sub>''']<sub>по математике [[Математика|скачать]], домашнее задание, учителям и школьникам на помощь [[Гипермаркет знаний - первый в мире!|онлайн]]</sub> |
| + | |
| | | |
- | <sub>Календарно-тематическое планирование по математике, задачи и ответы школьнику [[Гипермаркет знаний - первый в мире!|онлайн]], курсы учителю по математике [[Математика|скачать]]</sub> <br>
| |
| | | |
| '''<u>Содержание урока</u>''' | | '''<u>Содержание урока</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] конспект урока ''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] конспект урока ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] опорный каркас | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] опорный каркас |
- | [[Image:1236084776 kr.jpg|10x10px]] презентация урока | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] презентация урока |
- | [[Image:1236084776 kr.jpg|10x10px]] акселеративные методы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] акселеративные методы |
- | [[Image:1236084776 kr.jpg|10x10px]] интерактивные технологии | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] интерактивные технологии |
| | | |
| '''<u>Практика</u>''' | | '''<u>Практика</u>''' |
- | [[Image:1236084776 kr.jpg|10x10px]] задачи и упражнения | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] задачи и упражнения |
- | [[Image:1236084776 kr.jpg|10x10px]] самопроверка | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] самопроверка |
- | [[Image:1236084776 kr.jpg|10x10px]] практикумы, тренинги, кейсы, квесты | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] практикумы, тренинги, кейсы, квесты |
- | [[Image:1236084776 kr.jpg|10x10px]] домашние задания | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] домашние задания |
- | [[Image:1236084776 kr.jpg|10x10px]] дискуссионные вопросы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы |
- | [[Image:1236084776 kr.jpg|10x10px]] риторические вопросы от учеников | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников |
- |
| + | |
| '''<u>Иллюстрации</u>''' | | '''<u>Иллюстрации</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] аудио-, видеоклипы и мультимедиа ''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] фотографии, картинки | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фотографии, картинки |
- | [[Image:1236084776 kr.jpg|10x10px]] графики, таблицы, схемы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] графики, таблицы, схемы |
- | [[Image:1236084776 kr.jpg|10x10px]] юмор, анекдоты, приколы, комиксы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] юмор, анекдоты, приколы, комиксы |
- | [[Image:1236084776 kr.jpg|10x10px]] притчи, поговорки, кроссворды, цитаты | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] притчи, поговорки, кроссворды, цитаты |
| | | |
| '''<u>Дополнения</u>''' | | '''<u>Дополнения</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] рефераты''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] рефераты''' |
- | [[Image:1236084776 kr.jpg|10x10px]] статьи | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] статьи |
- | [[Image:1236084776 kr.jpg|10x10px]] фишки для любознательных | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фишки для любознательных |
- | [[Image:1236084776 kr.jpg|10x10px]] шпаргалки | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] шпаргалки |
- | [[Image:1236084776 kr.jpg|10x10px]] учебники основные и дополнительные | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] учебники основные и дополнительные |
- | [[Image:1236084776 kr.jpg|10x10px]] словарь терминов | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] словарь терминов |
- | [[Image:1236084776 kr.jpg|10x10px]] прочие | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] прочие |
| '''<u></u>''' | | '''<u></u>''' |
| <u>Совершенствование учебников и уроков | | <u>Совершенствование учебников и уроков |
- | </u>'''[[Image:1236084776 kr.jpg|10x10px]] исправление ошибок в учебнике''' | + | </u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] исправление ошибок в учебнике''' |
- | [[Image:1236084776 kr.jpg|10x10px]] обновление фрагмента в учебнике | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обновление фрагмента в учебнике |
- | [[Image:1236084776 kr.jpg|10x10px]] элементы новаторства на уроке | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке |
- | [[Image:1236084776 kr.jpg|10x10px]] замена устаревших знаний новыми | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми |
- |
| + | |
| '''<u>Только для учителей</u>''' | | '''<u>Только для учителей</u>''' |
- | <u></u>'''[[Image:1236084776 kr.jpg|10x10px]] идеальные уроки ''' | + | <u></u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] календарный план на год | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] календарный план на год |
- | [[Image:1236084776 kr.jpg|10x10px]] методические рекомендации | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] методические рекомендации |
- | [[Image:1236084776 kr.jpg|10x10px]] программы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] программы |
- | [[Image:1236084776 kr.jpg|10x10px]] обсуждения | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обсуждения |
| | | |
| | | |
Теорема 3.4 называется обратной теореме 3.3. Заключение теоремы 3.3 является условием теоремы 3.4. А условие теоремы 3.3 является заключением теоремы 3.4. Не всякая теорема имеет обратную, т. е. если данная теорема верна, то обратная теорема может быть неверна. Поясним это на примере теоремы о вертикальных углах. Эту теорему можно сформулировать так: если два угла вертикальные, то они равны. Обратная ей теорема была бы такой: если два угла равны, то они вертикальные. А это, конечно, неверно. Два равных угла вовсе не обязаны быть вертикальными.
Задача (16). Сформулируйте и докажите теорему, обратную утверждению задачи 12.
Решение. В задаче 12 условие состоит в том, что треугольник равносторонний, а заключение — в том, что все углы треугольника равны. Поэтому обратная теорема должна формулироваться так: если у треугольника все углы равны, то он равносторонний.
Докажем эту теорему. Пусть АВС — треугольник с равными углами:
A=
В=
C. Так как
A=
В, то по теореме 3.4 АС = СВ. Так как
В=
C, то по теореме 3.4 АС = АВ. Таким образом, АВ=АС = СВ, т. е. все стороны треугольника равны. Значит, по определению треугольник АБС равносторонний.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.