|
|
Строка 1: |
Строка 1: |
| <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 7 класс, Алгебра, урок, на Тему, Свойство медианы равнобедренного треугольника</metakeywords> | | <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 7 класс, Алгебра, урок, на Тему, Свойство медианы равнобедренного треугольника</metakeywords> |
| | | |
- | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 7 класс|Математика 7 класс]]>>Математика:Высота, Свойство медианы равнобедренного треугольника''' | + | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 7 класс|Математика 7 класс]]>>Математика: Свойство медианы равнобедренного треугольника''' |
| | | |
| <br> | | <br> |
| | | |
- | ''' СВОЙСТВО МЕДИАНЫ РАВНОБЕДРЕННОГО ТРЕУГОЛЬНИКА''' | + | ''' СВОЙСТВО МЕДИАНЫ РАВНОБЕДРЕННОГО ТРЕУГОЛЬНИКА''' |
| | | |
- | <br>Теорема 3.5 (свойство медианы равнобедренного треугольника). '''''В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой'''''. | + | <br>Теорема 3.5 (свойство медианы равнобедренного треугольника). '''''В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой'''''. |
| | | |
- | Доказательство. Пусть ABC — данный равнобедренный треугольник с основанием АВ и CD — медиана, проведенная к основанию (рис. 53). | + | Доказательство. Пусть ABC — данный равнобедренный треугольник с основанием АВ и CD — медиана, проведенная к основанию (рис. 53). |
| | | |
- | Треугольники CAD и CBD равны по первому признаку равенства треугольников. (У них стороны АС и ВС равны, потому что треугольник ABC равнобедренный. Углы CAD и CBD равны как углы при основании равнобедренного треугольника. Стороны AD и BD равны, потому что D — середина отрезка АВ.) | + | Треугольники CAD и CBD равны по первому признаку равенства треугольников. (У них стороны АС и ВС равны, потому что треугольник ABC равнобедренный. Углы CAD и CBD равны как углы при основании равнобедренного треугольника. Стороны AD и BD равны, потому что D — середина отрезка АВ.) |
| | | |
- | Из равенства треугольников следует равенство углов: [[Image:20-06-61.jpg]]ACD= [[Image:20-06-61.jpg]]BCD, [[Image:20-06-61.jpg]]ADC= [[Image:20-06-61.jpg]]BDC. Так как углы ACD и BCD равны, то CD — биссектриса. Так как углы ADC и BDC смежные и равны, то они прямые, поэтому CD — высота треугольника. Теорема доказана. | + | Из равенства треугольников следует равенство углов: [[Image:20-06-61.jpg]]ACD= [[Image:20-06-61.jpg]]BCD, [[Image:20-06-61.jpg]]ADC= [[Image:20-06-61.jpg]]BDC. Так как углы ACD и BCD равны, то CD — биссектриса. Так как углы ADC и BDC смежные и равны, то они прямые, поэтому CD — высота треугольника. Теорема доказана. |
| | | |
- | Задача (28). Докажите, что биссектриса равнобедренного треугольника, проведенная из вершины, противолежащей основанию, является медианой и высотой. | + | Задача (28). Докажите, что биссектриса равнобедренного треугольника, проведенная из вершины, противолежащей основанию, является медианой и высотой. |
- | | + | |
- | Решение. Пусть ABC — равнобедренный треугольник с основанием АВ к CD — его биссектриса (рис. 54). Треугольники ACD и BCD равны по первому признаку. У них сторона CD общая, стороны АС. и ВС равны как боковые стороны равнобедренного треугольника, а углы при вершине С равны, потому что CD — биссектриса. Из равенства треугольников следует равенство их сторон AD и BD. Значит, CD — медиана треугольника АВС. А по свойству медианы равнобедренного треугольника она является и высотой.
| + | |
| | | |
| + | Решение. Пусть ABC — равнобедренный треугольник с основанием АВ к CD — его биссектриса (рис. 54). Треугольники ACD и BCD равны по первому признаку. У них сторона CD общая, стороны АС. и ВС равны как боковые стороны равнобедренного треугольника, а углы при вершине С равны, потому что CD — биссектриса. Из равенства треугольников следует равенство их сторон AD и BD. Значит, CD — медиана треугольника АВС. А по свойству медианы равнобедренного треугольника она является и высотой. |
| | | |
| + | <br> |
| | | |
- | [[Image:21-06-8.jpg]]<br> | + | [[Image:21-06-8.jpg]]<br> |
| | | |
| <br> ''А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений'' <br> | | <br> ''А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений'' <br> |
Версия 06:22, 21 июня 2010
Гипермаркет знаний>>Математика>>Математика 7 класс>>Математика: Свойство медианы равнобедренного треугольника
СВОЙСТВО МЕДИАНЫ РАВНОБЕДРЕННОГО ТРЕУГОЛЬНИКА
Теорема 3.5 (свойство медианы равнобедренного треугольника). В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
Доказательство. Пусть ABC — данный равнобедренный треугольник с основанием АВ и CD — медиана, проведенная к основанию (рис. 53).
Треугольники CAD и CBD равны по первому признаку равенства треугольников. (У них стороны АС и ВС равны, потому что треугольник ABC равнобедренный. Углы CAD и CBD равны как углы при основании равнобедренного треугольника. Стороны AD и BD равны, потому что D — середина отрезка АВ.)
Из равенства треугольников следует равенство углов: ACD= BCD, ADC= BDC. Так как углы ACD и BCD равны, то CD — биссектриса. Так как углы ADC и BDC смежные и равны, то они прямые, поэтому CD — высота треугольника. Теорема доказана.
Задача (28). Докажите, что биссектриса равнобедренного треугольника, проведенная из вершины, противолежащей основанию, является медианой и высотой.
Решение. Пусть ABC — равнобедренный треугольник с основанием АВ к CD — его биссектриса (рис. 54). Треугольники ACD и BCD равны по первому признаку. У них сторона CD общая, стороны АС. и ВС равны как боковые стороны равнобедренного треугольника, а углы при вершине С равны, потому что CD — биссектриса. Из равенства треугольников следует равенство их сторон AD и BD. Значит, CD — медиана треугольника АВС. А по свойству медианы равнобедренного треугольника она является и высотой.

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений
Полный перечень тем по классам, календарный план согласно школьной программе по математике онлайн, видеоматериал по математике для 7 класса скачать
Содержание урока
конспект урока
опорный каркас
презентация урока
акселеративные методы
интерактивные технологии
Практика
задачи и упражнения
самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников
Иллюстрации
аудио-, видеоклипы и мультимедиа
фотографии, картинки
графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты
Дополнения
рефераты
статьи
фишки для любознательных
шпаргалки
учебники основные и дополнительные
словарь терминов
прочие
Совершенствование учебников и уроков
исправление ошибок в учебнике
обновление фрагмента в учебнике
элементы новаторства на уроке
замена устаревших знаний новыми
Только для учителей
идеальные уроки
календарный план на год
методические рекомендации
программы
обсуждения
Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
|