KNOWLEDGE HYPERMARKET


Свойство диагоналей параллелограмма
User16 (Обсуждение | вклад)
(Создана новая страница размером <metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, ...)
Следующая правка →

Версия 05:36, 22 июня 2010

Гипермаркет знаний>>Математика>>Математика 7 класс>>Математика: Свойство диагоналей параллелограмма


                                     СВОЙСТВО ДИАГОНАЛЕЙ ПАРАЛЛЕЛОГРАММА


Теорема 6.2 (обратная теореме 6.1).Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.

Доказательство. Пусть ABCD — данный параллелограмм (рис. 120). Проведем его диагональ BD. Отметим на  ней середину О и на продолжении отрезка АО отложим отрезок ОС1, равный АО.

По теореме 6.1 четырехугольник ABC1D есть параллелограмм. Следовательно, прямая ВС1 параллельна AD. Но через точку В можно провести только одну прямую, параллельную AD. Значит, прямая ВС1 совпадает с прямой ВС.

Точно так же доказывается, что прямая DC1 совпадает с прямой DC.

Значит, точка С1 совпадает с точкой С. Параллелограмм ABCD совпадает с ABC1D. Поэтому его диагонали пересекаются и точкой пересечения делятся пополам. Теорема доказана.


22-06-4.jpg


Задача (6). Через точку пересечения диагоналей параллелограмма проведена прямая. Докажите, что отрезок ее, заключенный между параллельными сторонами, делится этой точкой пополам.

Решение. Пусть ABCD — данный параллелограмм и EF — прямая, пересекающая параллельные стороны АВ и CD (рис. 121). Треугольники ОАЕ и ОСЕ равны по второму признаку. У них стороны OA и ОС равны, так как О — середина диагонали АС. Углы при вершине О равны как вертикальные, а углы ЕАО и FCO равны как внутренние накрест лежащие при параллельных АВ, CD и секущей АС.

Из равенства треугольников следует равенство сторон: OE=OF, что и требовалось доказать.

 


А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Планирование уроков по математике онлайн, задачи и ответы по классам, домашнее задание по математике 8 класса скачать


Содержание урока
1236084776 kr.jpg конспект урока                       
1236084776 kr.jpg опорный каркас  
1236084776 kr.jpg презентация урока
1236084776 kr.jpg акселеративные методы 
1236084776 kr.jpg интерактивные технологии 

Практика
1236084776 kr.jpg задачи и упражнения 
1236084776 kr.jpg самопроверка
1236084776 kr.jpg практикумы, тренинги, кейсы, квесты
1236084776 kr.jpg домашние задания
1236084776 kr.jpg дискуссионные вопросы
1236084776 kr.jpg риторические вопросы от учеников
 
Иллюстрации
1236084776 kr.jpg аудио-, видеоклипы и мультимедиа 
1236084776 kr.jpg фотографии, картинки 
1236084776 kr.jpg графики, таблицы, схемы
1236084776 kr.jpg юмор, анекдоты, приколы, комиксы
1236084776 kr.jpg притчи, поговорки, кроссворды, цитаты

Дополнения
1236084776 kr.jpg рефераты
1236084776 kr.jpg статьи 
1236084776 kr.jpg фишки для любознательных 
1236084776 kr.jpg шпаргалки 
1236084776 kr.jpg учебники основные и дополнительные
1236084776 kr.jpg словарь терминов                          
1236084776 kr.jpg прочие 

Совершенствование учебников и уроков
1236084776 kr.jpg исправление ошибок в учебнике
1236084776 kr.jpg обновление фрагмента в учебнике 
1236084776 kr.jpg элементы новаторства на уроке 
1236084776 kr.jpg замена устаревших знаний новыми 
 
Только для учителей
1236084776 kr.jpg идеальные уроки 
1236084776 kr.jpg календарный план на год  
1236084776 kr.jpg методические рекомендации  
1236084776 kr.jpg программы
1236084776 kr.jpg обсуждения


Интегрированные уроки


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.