Гипермаркет знаний>>Математика>>Математика 7 класс>>Математика:Линейное уравнение с двумя переменными и его график
ЛИНЕЙНОЕ УРАВНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ И ЕГО ГРАФИК
Нам часто встречались уравнения вида ах + b = 0, где а, Ь — числа, х — переменная. Например, bх - 8 = 0, х + 4 = О, - 7х - 11 = 0 и т. д. Числа а, Ь (коэффициенты уравнения) могут быть любыми, исключает лишь случай, когда а = 0.
Уравнение ах + Ь = 0, где а , называют линейным уравнением с одной переменной х (или линейным уравнением с одним неизвестным х). Решить его, т. е. выразить х через а и b, мы с вами умеем:

Ранее мы отмечали, что довольно часто математической моделью реальной ситуации служит линейное уравнение с одной переменной или уравнение, которое после преобразований сводится к линейному. А теперь рассмотрим такую реальную ситуацию.
Из городов A и В, расстояние между которыми 500 км, навстречу друг другу вышли два поезда, каждый со своей постоянной скоростью. Известно, что первый поезд вышел на 2 ч раньше второго. Через 3 ч после выхода второго поезда они встретились. Чему равны скорости поездов?
Составим математическую модель задачи. Пусть х км/ч — скорость первого поезда, у км/ч — скорость второго поезда. Первый был в пути 5 ч и, значит, прошел путь bх км. Второй поезд был в пути 3 ч, т.е. прошел путь Зу км. Их встреча произошла в пункте С. На рисунке 31 представлена геометрическая модель ситуации. На алгебраическом языке ее можно описать так:
5х + Зу = 500

или 5х + Зу - 500 = 0. Эту математическую модель называют линейным уравнением с двумя переменными х, у. Вообще, ах + by + с = 0, где а, b, с — числа, причем , — линейное уравнение с двумя переменными хну (или с двумя неизвестными х и у). Вернемся к уравнению 5х + Зу = 500. Замечаем, что если х = 40, у = 100, то 5 • 40 + 3 • 100 = 500 — верное равенство. Значит, ответ на вопрос задачи может быть таким: скорость первого поезда 40 км/ч, скорость второго поезда 100 км/ч. Пару чисел х = 40, у = 100 называют решением уравнения 5х + Зу = 500. Говорят также, что эта пара значений (х; у) удовлетворяет уравнению 5х + Зу = 500.
К сожалению, это решение не единственно (мы ведь все любим определенность, однозначность). В самом деле, возможен и такой вариант: х = 64, у = 60; действительно, 5 • 64 + 3 • 60 = 500 — верное равенство. И такой: х = 70, у = 50 (поскольку 5 • 70 + 3 • 50 = 500 — верное равенство).
А вот, скажем, пара чисел х = 80, у = 60 решением уравнения не является, поскольку при этих значениях верного равенства не получается:
 Вообще, решением уравнения ах + by + с = 0 называют всякую пару чисел (х; у), которая удовлетворяет этому уравнению, т. е. обращает равенство с переменными ах + by + с = 0 в верное числовое равенство. Таких решений бесконечно много.
Замечание. Вернемся еще раз к уравнению 5х + Зу = 500, полученному в рассмотренной выше задаче. Среди бесконечного множества его решений име- ются, например, и такие: х = 100, у = 0 (в самом деле, 5 • 100 + 3 • 0 = 500 — верное числовое равенство); х = 118, у = - 30 (так как 5 • 118 + 3 • (-30) = 500 — верное числовое равенство). Однако, являясь решениями уравнения, эти пары не могут служить решениями данной задачи, ведь скорость поезда не может быть равной нулю (тогда он не едет, а стоит на месте); тем более скорость поезда не может быть отрицательной (тогда он едет не навстречу другому поезду, как сказано в условии задачи, а в противоположную сторону).
Пример 1. Изобразить решения линейного уравнения с двумя переменными х + у - 3 = 0 точками в координатной плоскости хОу.
Решение. Подберем несколько решений заданного уравнения, т. е. несколько пар чисел, которые удовлетворяют уравнению: (3; 0), (2; 1), (1; 2) (0; 3), (- 2; 5). Построим в координатной плоскости хОу точки А (3; 0), B(2; 1), С (1; 2), D (0; 3), Е (- 2; 5) (рис. 32). Обратите внимание: все эти пять точек лежат на одной прямой I, проведем ее.

Говорят, что прямая I является графиком уравнения х + у - 3 = 0. Говорят также, что прямая I — геометрическая модель уравнения х + у - 3 = 0
(или х + у = 3).
Итак, если пара чисел (х; у) удовлетворяет уравнению х + у - 3 = 0, то точка М (х; у) принадлежит прямой I; если точка М(х; у) принадлежит прямой I, то пара (х; у) — решение уравнения х + у - 3 = 0. Например, точка Р(6; -3) принадлежит прямой I (рис. 32) и пара (6; -3) — решение уравнения х + у-3 = 0
Подведем итоги: Реальная ситуация (словесная модель) Сумма двух чисел равна 3 Алгебраическая модель х + у = 3 (линейное урав- нение с двумя переменными) Геометрическая модель прямая 1 на рисунке 32 (график линейного уравнения с двумя переменными) Теорема 1 I Графиком любого линейного уравнения I ах + by + с = 0 является прямая. Доказать теорему нам с вами пока не под силу — это будет сделано позднее, в курсе геометрии. Но пользоваться теоремой мы, конечно, имеем право уже сейчас. Кстати, догадываетесь ли вы, откуда появился . термин «линейное уравнение»? Это фактически на- уравнения поминание о геометрической модели — прямой ли- нии, которая служит графиком уравнения. Пример 2. Построить график уравнения Зх-2у+6=0. Решение. Подберем несколько решений заданного уравнения: 1) @; 3); в самом деле, если х = 0, у = 3, то 3*0-2*3 + 6 = 0 — верное равенство (в уравнение Зд: - 2у + 6 = 0 мы подставили значения х = 0, у = 3); 2) (- 2; 0); действительно, если х = - 2, у = 0, то 3*(-2)-2*0 + 6 = 0 — верное равенство; 3) B; 6); если х = 2, у = 6, то 3*2-2*6 + 6 = 0 — верное равенство; 4) D; 9); если х = 4, у = 9, то 3*4-2*9 + 6 = 0 — верное равенство. Построим точки @; 3), (- 2; 0), B; 6), D; 9) на координатной плоскости хОу. Они лежат на од- ной прямой, проведем ее (рис. 33). Эта прямая и Рис. 33 есть график уравнения Зд: - 2у + 6 = 0. <И Пример решен, хотя и верно, но очень нерацио- нально. Почему? Давайте рассуждать. 1. Мы знаем, что графиком линейного уравнения Зд: - 2у + 6 = 0 является прямая (это утверждается в теореме). Чтобы провести прямую, достаточно указать две ее точки. Через две точки можно провести прямую и притом толь- ко одну — этому нас учит геометрия. Поэтому построенные выше четыре точки — это явный перебор. Достаточно было построить точ- ки @; 3) и (-2; 0) и с помощью линейки провести через них прямую. 2. Решения данного уравнения мы подбирали, т.е. угадывали. Угадать что-либо всегда труднее, чем действовать по определен- ному правилу. Нельзя ли было и здесь не угадывать, а действо- вать по какому-то правилу? Можно. Например, так. Дадим пере- менной х конкретное значение, например х = 0 (обычно пишут хх = 0). Подставив это значение в уравнение Зд: - 2у + 6 = 0, получим: 3 • 0 - 2у + 6 = 0, т.е. -2у + 6 = 0. Из этого уравнения находим: у = 3 (обычно пишут ух = 3). Значит, если х = 0, то у = 3; пара @; 3) — решение данного уравнения. Дадим переменной х еще одно конкретное значение, например х = - 2 (обычно пишут хг = - 2). Подставив это значение в уравнение Зх-2у + 6 = 0, получим: 3 • (-2) - 2у + 6 = 0, т. е. - 2у = 0. Из этого уравнения находим у = 0 (обычно пишут у2 = 0). Значит, если х = -2, то у = 0; пара (- 2; 0) — решение данного уравнения. Вот теперь мы в состоянии сформулировать алгоритм построе- ния графика линейного уравнения ах + by + с = 0 (где, напомним, а,Ь,с — любые числа, но а Ф 0, Ъ Ф 0). Алгоритм построения графика уравнения ах + by + с - 0 1. Придать переменной х конкретное значение х = xt; найти из уравнения axt + by + с = 0 соот- ветствующее значение у: у = yv 2. Придать переменной х другое значение х — х^ найти из уравнения ах2 + by + с = 0 соответствующее зна- чение у: у = у 2. 3. Построить на координатной плоскости хОу две точки (xt; yt)u (x2; уг). 4. Провести через эти две точки прямую — она и будет графиком уравнения ах + Ьу + с = 0.
Замечание. Чаще всего на первом шаге алгоритма берут значение х = 0. Второй шаг иногда немного изменяют: пола- гают у = 0 и находят соответствующее значение х. ЛИНЕЙНАЯ ФУНКЦИЯ Пример \ j \ 4' 1 0 У К > 1 3 \ Рис. 34 3. Построить график уравнения 4х + 3у- 12 = 0. Решение. Будем действовать по алгорит- му (с учетом замечания). 1) Положим х = 0, подставим это значение в уравнение 4х + Зу- 12 = 0, получим: 4 • 0 + Зу - -12 = 0, Зу-12 = 0, у = 4. 2) Положим у = 0, подставим это значение в уравнение 4х + Зу - 12 = 0, получим: 4 • х + 3 • 0 - 12 - 0, 4х - 12 = 0, х = 3. 3) Построим на координатной плоскости хОу две точки: @; 4) — она найдена на первом шаге алгоритма и C; 0) — она найдена на вто- ром шаге. 4) Проведем через точки @; 4) и C; 0) пря- мую. Это и есть искомый график (рис. 34). Пример 4. Иванов и Петров посадили на своих садовых участках яблони, причем Петров посадил яблонь в 2,5 раза боль- ше, чем Иванов. На следующий год они увеличили число яблонь (подсадили новые саженцы), причем у Иванова стало яблонь в 3 раза больше, чем было, а у Петрова в 2 раза больше, чем было. В итоге у них вместе стало 16 яблонь. Сколько яблонь посадили Иванов и Петров в первый год? Решение. Первый этап. Составление математической модели. Пусть х — число яблонь, посаженных в первый год Ивановым, а у — число яблонь, посаженных в первый год Петровым. По усло- вию задачи у = 2,Ъх. Здесь целесообразно умножить обе части урав- нения на 2, получим: 2у = Ьх. Это уравнение перепишем в виде: Ъх-2у = 0. A) Далее, на второй год Иванов увеличил число саженцев на сво- ем участке в 3 раза и, значит, у него стало Зд: яблонь. Петров увеличил число саженцев на своем участке в 2 раза, т. е. у него стало 2у яблонь. По условию у обоих в сумме стало 16 яблонь, т. е. Зх + 2у= 16. Перепишем это уравнение в виде 3* + 2у - 16 = 0. B) Математическая модель задачи готова, она состоит из двух линейных уравнений с двумя переменными хну — из уравнений A) и B). Обычно в таких случаях уравнения записывают одно под другим и используют специальный символ — фигурную скобку: [5х-2у=0, h 8' с 1 У > 1 1 0 \ i / е н V \ //> Г < \ V Второй этап. Работа с составленной моделью. Интересующая нас пара чисел (х; у) должна удовлетворять и уравнению A), и уравнению B), т. е. интересу- ющая нас точка (х; у) должна лежать как на прямой A), так и на прямой B). Что делать? Ответ очевиден: надо построить прямую A), за- тем прямую B) и, наконец, найти точку пересе- чения этих прямых. 1) строим график уравнения Ьх - 2у = 0. Если х = 0, то у = 0; если х = 2, то у = 5. Проведем через точки @; 0) и B; 5) прямую 1Х (рис. 35). 2) строим график уравнения Зд: + 2у - 16 = 0. Если х = 0, то у = 8; если х = 2, то у = 5. Прове- дем через точки @; 8) и B; 5) прямую 12 (см. 35). 3) прямые 1Х и 12 пересекаются в точке B; 5), т. е. х = 2, у = 5. Tpyr^jT ататт. Ответ на вопрос задачи. Спрашивается, сколько яблонь посадили в первый год Иванов и Петров, т. е. чему равны хну? Ответ на этот вопрос уже полу- чен: х — 2, у = 5. О т в е т: в первый год Иванов посадил 2 яблони, а Петров — 5 яблонь. Как видите, не зря мы с вами учились строить графики линей- ных уравнений с двумя переменными. Это позволило нам от од- ной математической модели (алгебраической модели C)) перейти к другой математической модели — геометрической (две прямые на координатной плоскости на рисунке 35), что и дало возмож- ность довести решение до конца. моделью C), не переходя к геометрической модели? Можно, но об этом речь впереди, в главе 8. Там, используя новые знания, мы снова вернемся к мо- дели C).
Календарно-тематическое планирование по математике, видео по математике онлайн, Математика в школе скачать
Содержание урока
конспект урока
опорный каркас
презентация урока
акселеративные методы
интерактивные технологии
Практика
задачи и упражнения
самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников
Иллюстрации
аудио-, видеоклипы и мультимедиа
фотографии, картинки
графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты
Дополнения
рефераты
статьи
фишки для любознательных
шпаргалки
учебники основные и дополнительные
словарь терминов
прочие
Совершенствование учебников и уроков
исправление ошибок в учебнике
обновление фрагмента в учебнике
элементы новаторства на уроке
замена устаревших знаний новыми
Только для учителей
идеальные уроки
календарный план на год
методические рекомендации
программы
обсуждения
Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
|