Гипермаркет знаний>>Математика>>Математика 7 класс>>Математика:Линейное уравнение с двумя переменными и его график
ЛИНЕЙНОЕ УРАВНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ И ЕГО ГРАФИК
Уравнение ах + Ь = 0, где а
Из городов A и В, расстояние между которыми 500 км, навстречу друг другу вышли два поезда, каждый со своей постоянной скоростью. Известно, что первый поезд вышел на 2 ч раньше второго. Через 3 ч после выхода второго поезда они встретились. Чему равны скорости поездов? Составим математическую модель задачи. Пусть х км/ч — скорость первого поезда, у км/ч — скорость второго поезда. Первый был в пути 5 ч и, значит, прошел путь bх км. Второй поезд был в пути 3 ч, т.е. прошел путь Зу км. Их встреча произошла в пункте С. На рисунке 31 представлена геометрическая модель ситуации. На алгебраическом языке ее можно описать так: 5х + Зу = 500 или К сожалению, это решение не единственно (мы ведь все любим определенность, однозначность). В самом деле, возможен и такой вариант: х = 64, у = 60; действительно, 5 • 64 + 3 • 60 = 500 — верное равенство. И такой: х = 70, у = 50 (поскольку 5 • 70 + 3 • 50 = 500 — верное равенство). А вот, скажем, пара чисел х = 80, у = 60 решением уравнения не является, поскольку при этих значениях верного равенства не получается: Замечание. Вернемся еще раз к уравнению 5х + Зу = 500, полученному в рассмотренной выше задаче. Среди бесконечного множества его решений име- Пример 1. Изобразить решения линейного уравнения с двумя переменными х + у - 3 = 0 точками в координатной плоскости хОу. Решение. Подберем несколько решений заданного уравнения, т. е. несколько пар чисел, которые удовлетворяют уравнению: (3; 0), (2; 1), (1; 2) (0; 3), (- 2; 5).
(или х + у = 3). Итак, если пара чисел (х; у) удовлетворяет уравнению х + у - 3 = 0, то точка М (х; у) принадлежит прямой I; если точка М(х; у) принадлежит прямой I, то пара (х; у) — решение уравнения х + у - 3 = 0. Например, точка Р(6; -3) принадлежит прямой I (рис. 32) и пара (6; -3) — решение уравнения х + у-3 = 0
Кстати, догадываетесь ли вы, откуда появился термин «линейное уравнение»? Это фактически напоминание о геометрической модели — прямой линии, которая служит графиком уравнения. Пример 2. Построить график уравнения Зх-2у+6=0. Решение. Подберем несколько решений заданного уравнения: 2) (- 2; 0); действительно, если х = - 2, у = 0, то 3 • (-2)-2 • 0 + 6 = 0 — верное равенство; 3) (2; 6); если х = 2, у = 6, то 3 • 2-2 • 6 + 6 = 0 — верное равенство; 4) (4; 9); если х = 4, у = 9, то 3 • 4-2 • 9 + 6 = 0 — верное равенство. Построим точки (3; 3), (- 2; 0), (2; 6), (4; 9) на координатной плоскости хОу. Они лежат на одной прямой, проведем ее (рис. 33). Эта прямая и Рис. 33 есть график уравнения Зx - 2у + 6 = 0.
1. Мы знаем, что графиком линейного уравнения Зx - 2у + 6 = 0 является прямая (это утверждается в теореме). Чтобы провести прямую, достаточно указать 2. Решения данного уравнения мы подбирали, т.е. угадывали. Угадать что-либо всегда труднее, чем действовать по определенному правилу. Нельзя ли было и здесь не угадывать, а действовать по какому-то правилу? Можно. Например, так. Дадим переменной х конкретное значение, например х = 0 (обычно пишут у1 = 3). Значит, если х = 0, то у = 3; пара (0; 3) — решение данного уравнения. Дадим переменной х еще одно конкретное значение, например х = - 2 (обычно пишут хг = - 2). Подставив это значение в уравнение Зх-2у + 6 = 0, получим: 3 • (-2) - 2у + 6 = 0, т. е. - 2у = 0. Из этого уравнения находим у = 0 (обычно пишут у2 = 0). Значит, если х = -2, то у = 0; пара (- 2; 0) — решение данного уравнения.
Замечание. Чаще всего на первом шаге алгоритма берут значение х = 0. Второй шаг иногда немного изменяют: полагают у = 0 и находят соответствующее значение х. Пример 3. Построить график уравнения 1) Положим х = 0, подставим это значение в уравнение 4х + Зу- 12 = 0, получим: 4 • 0 + Зу -12 = 0, Зу-12 = 0, у = 4. 2) Положим у = 0, подставим это значение в уравнение 4х + Зу - 12 = 0, получим: 4 • х + 3 • 0 - 12 - 0, 4х - 12 = 0, х = 3. 3) Построим на координатной плоскости хОу две точки: (0; 4) — она найдена на первом шаге алгоритма и (3; 0) — она найдена на втором шаге. 4) Проведем через точки (0; 4) и (3; 0) прямую. Это и есть искомый график (рис. 34). Пример 4. Иванов и Петров посадили на своих садовых участках яблони, причем Петров посадил яблонь в 2,5 раза больше, чем Иванов. На следующий год они увеличили число яблонь (подсадили новые саженцы), причем у Иванова стало яблонь в 3 раза больше, чем было, а у Петрова в 2 раза больше, чем было. В итоге у них вместе стало 16 яблонь. Сколько яблонь посадили Иванов и Петров в первый год? Решение.
Ответ очевиден: надо построить прямую (1), затем прямую (2) и, наконец, найти точку пересечения этих прямых. 1) строим график уравнения Ьх - 2у = 0. Если х = 0, то у = 0; если х = 2, то у = 5. Проведем через точки (0; 0) и (2; 5) прямую I1 (рис. 35). 2) строим график уравнения Зx + 2у - 16 = 0. Если х = 0, то у = 8; если х = 2, то у = 5. Проведем через точки (0; 8) и (2; 5) прямую 12 (см. 35).
О т в е т: в первый год Иванов посадил 2 яблони, а Петров — 5 яблонь. А можно ли работать непосредственно смоделью (3), не переходя к геометрической модели?
Календарно-тематическое планирование по математике, видео по математике онлайн, Математика в школе скачать
Содержание урока
Если у вас есть исправления или предложения к данному уроку, напишите нам. Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум. |
Авторські права | Privacy Policy |FAQ | Партнери | Контакти | Кейс-уроки
© Автор системы образования 7W и Гипермаркета Знаний - Владимир Спиваковский
При использовании материалов ресурса
ссылка на edufuture.biz обязательна (для интернет ресурсов -
гиперссылка).
edufuture.biz 2008-© Все права защищены.
Сайт edufuture.biz является порталом, в котором не предусмотрены темы политики, наркомании, алкоголизма, курения и других "взрослых" тем.
Ждем Ваши замечания и предложения на email:
По вопросам рекламы и спонсорства пишите на email: