Реклама




Деление многочлена на одночлен

Материал из Гипермаркет знаний

Перейти к: навигация, поиск
Реклама

Гипермаркет знаний>>Математика>>Математика 7 класс>>Математика: Деление многочлена на одночлен



              Деление многочлена на одночлен

Снова, как и в начале § 15, сравним планы построения глав 3 и 4. Вы, наверное, заметили, что эти планы почти одинаковы, хотя полное совпадение нарушил предыдущий параграф (посвященный специфическим формулам сокращенного умножения), да и в главе 3 мы рассмотрели возведение одночлена в степень, а в главе 4 соответствующего разговора о возведении в степень многочлена не было, за исключением случая, когда двучлен возводится в квадрат. После умножения одночленов в главе 3 шла речь о делении одночлена на одночлен. Вот и в главе 4 мы сейчас поговорим об аналогичной операции — делении многочлена на одночлен.

В ее основе лежит следующее свойство деления суммы на число:


(a + b + c):m = (a:m) + (b:m) + (c: m).


Это позволяет сразу сформулировать правило деления многочлена на одночлен.

Правило 4.

В § 12 мы отмечали, что не всегда можно разделить одночлен на одночлен; чтобы деление было выполнимо, необходимо соблюдение целого ряда условий — вспомните их (или посмотрите в § 12), прежде чем рассматривать пример, который приведен ниже. Если задача деления одночлена (простейшего многочлена) на одночлен не всегда была корректной, то что же говорить о делении многочлена на одночлен: такое деление выполнимо достаточно редко.


Пример 1. Разделить многочлен 2а2b + 4аb2 на одночлен 2а.
Решение. Находим:


Деление многочлена на одночлен

Здесь мы использовали тот способ записи, который обговорили в § 12. А вот иной способ (можно применять и тот, и другой, смотря по тому, какой из них вам больше нравится): выделим в каждом члене многочлена 2а2& + 4а&2 множитель, в точности равный делителю 2а. Получим:


2b + 4аb2 = 2а • аb + 2а • 2b2.


Эту сумму можно записать в виде произведения 2a(ab + 2b2). Теперь ясно, что если это произведение разделить на 2а (на один множитель), то в частном получится аb + 2Ь2 (другой множитель).

Пример 2. Разделить многочлен 6x3 - 24x2 на 6x2.
Решение.
Первый способ. Находим:


Деление многочлена


Второй способ. Имеем:
бx3 - 24x2 - бx2• х - 6х2 • 4 = 6x2(x - 4).

Значит, частное от деления 6x3 - 24x2 на 6x2 равно х - 4.

Пример 3. Разделить многочлен 8а3 + 6а2b - b на 2а2.

Решение. Имеем:
3 + 6а2b - b = 2а2 • 4а + 2а2 -Зb-b.

Поскольку в третьем члене заданного многочлена (речь идет о члене -b) множитель 2а2 не выделяется, деление невозможно. Эта задача некорректна. Фактически мы снова, как и в конце § 12, пришли к алгебраической дроби — на этот раз к алгебраической дроби


Алгебраическая дробь

Итак, деление многочлена на одночлен выполняется не всегда, а если и выполняется, то требует определенных усилий. Деление же многочлена на многочлен — еще более трудная (и еще более редко выполнимая) операция, это нам пока не по силам.



Рефераты, домашняя работа по математике скачать, учебники скачать бесплатно, онлайн уроки, вопросы и ответы

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений



Содержание урока
1236084776 kr.jpg конспект урока                       
1236084776 kr.jpg опорный каркас  
1236084776 kr.jpg презентация урока
1236084776 kr.jpg акселеративные методы 
1236084776 kr.jpg интерактивные технологии 

Практика
1236084776 kr.jpg задачи и упражнения 
1236084776 kr.jpg самопроверка
1236084776 kr.jpg практикумы, тренинги, кейсы, квесты
1236084776 kr.jpg домашние задания
1236084776 kr.jpg дискуссионные вопросы
1236084776 kr.jpg риторические вопросы от учеников

Иллюстрации
1236084776 kr.jpg аудио-, видеоклипы и мультимедиа 
1236084776 kr.jpg фотографии, картинки 
1236084776 kr.jpg графики, таблицы, схемы
1236084776 kr.jpg юмор, анекдоты, приколы, комиксы
1236084776 kr.jpg притчи, поговорки, кроссворды, цитаты

Дополнения
1236084776 kr.jpg рефераты
1236084776 kr.jpg статьи 
1236084776 kr.jpg фишки для любознательных 
1236084776 kr.jpg шпаргалки 
1236084776 kr.jpg учебники основные и дополнительные
1236084776 kr.jpg словарь терминов                          
1236084776 kr.jpg прочие 

Совершенствование учебников и уроков
1236084776 kr.jpg исправление ошибок в учебнике
1236084776 kr.jpg обновление фрагмента в учебнике 
1236084776 kr.jpg элементы новаторства на уроке 
1236084776 kr.jpg замена устаревших знаний новыми 

Только для учителей
1236084776 kr.jpg идеальные уроки 
1236084776 kr.jpg календарный план на год  
1236084776 kr.jpg методические рекомендации  
1236084776 kr.jpg программы
1236084776 kr.jpg обсуждения


Интегрированные уроки


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.

Реклама
Просмотры
Реклама











Личные инструменты
��������...