Гипермаркет знаний>>Математика>>Математика 8 класс>>Математика:Модуль действительного числа
Модуль действительного числа
1.Модуль действительного числа
и его свойства В младших классах вы уже встречались с понятием модуля (или абсолютной величины) числа, пользовались обозначением | а |. Вы знаете, что, например, | 5 | = 5, | - 3 | = 3. Правда, раньше речь шла только о рациональных числах. Теперь надо ввести понятие модуля для любого действительного числа.
Определение. Модулем неотрицательного действительного числа х называют само это число: | х | = х; модулем отрицательного действительного числа х называют противоположное число: I х | = - х.
Короче это записывают так:

Например,

На практике используют различные свойства модулей, например:
1. |а| 0. 2.|аb| =|a| |b|.

2. Геометрический смысл модуля действительного числа
Вернемся к множеству R действительных чисел и его геометрической модели — числовой прямой. Отметим на прямой две точки а и b (два действительных числа а и b), обозначим через (a, b) расстояние между точками а и b ( — буква греческого алфавита «ро»). Это расстояние равно b - а, если b > а (рис. 101), оно равно а - b, если а > b (рис. 102), наконец, оно равно нулю, если а = b.

Все три случая охватываются одной формулой:

Пример 1. Решить уравнения:
а) | х - 2| = 3; б) | х + 3,2| = 2; в) | х | = 2,7; г) | x - I = 0. Решение, а) Переведем аналитическую модель |х - 2| = 3 на геометрический язык: нам нужно найти на координатной прямой такие точки х, которые удовлетворяют условию (х, 2) = 3, т. е. удалены от точки 2 на расстояние, равное 3. Это — точки - 1 и 5 (рис. 103). Следовательно, уравнение имеет два корня: - 1 и 5.
б) Уравнение | х + 3,2 | = 2 перепишем в виде | х - (— 3,2) | = 2 и далее (х, - 3,2) = 2. На координатной прямой есть две точки, которые удалены от точки - 3,2 на расстояние, равное 2. Это — точки - 5,2 и - 1,2 (рис. 104). Значит, уравнение имеет два корня: -5,2 и - 1,2.

в) Уравнение |x| = 2,7 перепишем в виде |х - 0| = 2,7, или, что то же самое, (х, 0) = 2,7. На координатной прямой имеются две точки, которые удалены от точки О на расстояние, равное 2,7. Это — точки - 2,7 и 2,7 (рис. 105). Таким образом, уравнение имеет два корня: - 2,7 и 2,7'.
г) Для уравнения |х - | = 0 можно обойтись без геометрической иллюстрации, ведь если | а | = 0, то а = 0. Поэтому х - = 0, т. е. х = .
Пример 2. Решить уравнения:
а) |2х - 6| = 8; б) |5 - Зx | = 6; в) |4x + 1| = - 2.
Р е ш е н и е.
а) Имеем|2x - 6| = |2(x -3)| =|2|.| = 2|x -3|
Значит, заданное уравнение можно преобразовать к виду
2|х - 3| = 8, откуда получаем | х - 3| = 4.
Переведем аналитическую модель | х - 3 | = 4 на геометрический язык: нам нужно найти на координатной прямой такие точки х, которые удовлетворяют условию (х, 3) = 4, т. е. удалены от точки 3 на расстояние, равное 4. Это — точки - 1 и 7 (рис. 106). Итак, уравнение имеет два корня: - 1 и 7.
б) Имеем

Поэтому заданное уравнение можно преобразовать к виду

Переведем аналитическую модель на геометрический язык: нам нужно найти на координатной прямой такие точки х, которые удовлетворяют условию
Значит, они удалены от точки , на расстояние, равное 2.

в) Для уравнения | 4х + 1 | = - 2 никаких преобразований делать не нужно. Оно явно не имеет корней, поскольку в левой его части содержится неотрицательное выражение, а в правой — отрицательное число.
Пример 3. Построить график функции у = |х + 2 |.
Решение. График этой функции получается из графика функции у = | х | сдвигом последнего на две единицы масштаба влево (рис. 111).

4. Тождество  Мы знаем, что если .А как быть, если а < 0? Написать у в этом случае нельзя, ведь а < 0 и получится, что , а это неверно, так как значение квадратного корня не может быть отрицательным.
Чему же равно выражение при а < 0? По определению квадратного корня в ответе должно получиться такое число, которое, во-первых, положительно и, во-вторых, при возведении в квадрат дает подкоренное число, т. е. а2. Таким числом будет - а. Смотрите:
1) - а > 0 (еще раз напомним, что а — отрицательное число, значит, - а — положительное число);
2)(-а)2=а2.
Итак,

Вам ничего не напоминает конструкция, полученная в правой части равенства? Вспомните, ведь точно так же определяется модуль числа а:

Значит, и | а | — одно и то же. Тем самым мы доказали важное тождество:

В роли а может выступать любое числовое или алгебраическое выражение.
Пример 4. Упростить выражение , если: а) а - 1 > 0; б) а - 1 < 0. Решение. Как мы только что установили, справедливо тождество
 а) Если а - 1 > 0, то | а - 1| = а - 1. Таким образом, в этом случае получаем = а - 1. б) Если а - 1 <0, то |а - 1| = -(а - 1) = 1 - а. Значит, в этом случае получаем = 1 - а. в
Мордкович А. Г., Алгебра. 8 кл.: Учеб. для общеобразоват. учреждений.— 3-е изд., доработ. — М.: Мнемозина, 2001. — 223 с: ил.
Видео по математикескачать, домашнее задание, учителям и школьникам на помощь онлайн
Содержание урока
конспект урока
опорный каркас
презентация урока
акселеративные методы
интерактивные технологии
Практика
задачи и упражнения
самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников
Иллюстрации
аудио-, видеоклипы и мультимедиа
фотографии, картинки
графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты
Дополнения
рефераты
статьи
фишки для любознательных
шпаргалки
учебники основные и дополнительные
словарь терминов
прочие
Совершенствование учебников и уроков
исправление ошибок в учебнике
обновление фрагмента в учебнике
элементы новаторства на уроке
замена устаревших знаний новыми
Только для учителей
идеальные уроки
календарный план на год
методические рекомендации
программы
обсуждения
Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
|