KNOWLEDGE HYPERMARKET


Методы решения систем уравнений
 
(6 промежуточных версий не показаны.)
Строка 1: Строка 1:
-
'''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]&gt;&gt;[[Математика|Математика]]&gt;&gt;[[Математика 9 класс|Математика 9 класс]]&gt;&gt;Математика: Методы решения систем уравнений<metakeywords>Методы решения систем уравнений</metakeywords>'''  
+
'''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]&gt;&gt;[[Математика|Математика]]&gt;&gt;[[Математика 9 класс|Математика 9 класс]]&gt;&gt;Математика: Методы решения систем уравнений<metakeywords>Методы решения систем уравнений, систем уравнений, алгоритмом, Переменные, уравнение, алгебраического сложения, рациональных уравнений, методом подстановки, иррациональных</metakeywords>'''  
-
<br>
+
<h2>Какие существуют методы решения систем уравнения?</h2>
-
&nbsp;'''МЕТОДЫ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ'''<br>
+
В этом параграфе мы обсудим три метода решения [[Системы уравнений. Основные понятия|систем уравнений]], более надежные, чем графический метод, который рассмотрели в предыдущем параграфе.
-
<br>В этом параграфе мы обсудим три метода решения систем уравнений, более надежные, чем графический метод, который рассмотрели в предыдущем параграфе.<br>'''1. Метод подстановки'''<br>Этот метод мы применяли в 7-м классе для решения систем линейных уравнений. Тот алгоритм, который был выработан в 7-м классе, вполне пригоден для решения систем любых двух уравнений (не обязательно линейных) с двумя переменными х и у (разумеется, переменные могут быть обозначены и другими буквами, что не имеет значения). Фактически этим алгоритмом мы воспользовались в предыдущем параграфе, когда задача о двузначном числе привела к математической модели, представляющей собой систему уравнений. Эту систему уравнений мы решили выше методом подстановки (см. пример 1 из § 4).<br>'''''Алгоритм использования метода подстановки при решении системы двух уравнений с двумя переменными х, у.'''''<br>'''1.'''&nbsp;&nbsp;&nbsp; Выразить у через х из одного уравнения системы.<br>'''2.'''&nbsp;&nbsp;&nbsp; Подставить полученное выражение вместо у в другое уравнение системы.<br>'''3.'''&nbsp;&nbsp;&nbsp; Решить полученное уравнение относительно х.<br>'''4.'''&nbsp;&nbsp;&nbsp; Подставить поочередно каждый из найденных на третьем шаге корней уравнения вместо х в выражение у через х, полученное на первом шаге.<br>'''5.'''&nbsp;&nbsp;&nbsp; Записать ответ в виде пар значений (х; у), которые были найдены соответственно на третьем и четвертом шаге.<br>Переменные х и у, разумеется, равноправны, поэтому с таким же успехом мы можем на первом шаге алгоритма выразить не у через х, а х через у из одного уравнения. Обычно выбирают то уравнение, которое представляется более простым, и выражают ту переменную из него, для которой эта процедура представляется более простой.<br>'''Пример 1.''' Решить систему уравнений [[Image:al61.jpg]]<br>'''Р е ш е н и е. 1)''' Выразим х через у из первого уравнения системы: х = 5 - 3у.<br>'''2)&nbsp;&nbsp;'''&nbsp; Подставим полученное выражение вместо х во второе уравнение системы: (5 - 3у) у — 2.<br>'''3)&nbsp;'''&nbsp;&nbsp; Решим полученное уравнение: [[Image:al62.jpg]]<br>'''4)'''&nbsp;&nbsp;&nbsp; Подставим поочередно каждое из найденных значений у в формулу х = 5 - Зу. Если [[Image:al63.jpg]] то [[Image:al64.jpg]]<br>'''5)'''&nbsp;&nbsp;&nbsp; Пары (2; 1) и [[Image:al65.jpg]] решения заданной системы уравнений.
+
<h2>Метод подстановки</h2>
-
'''О тв е т:''' (2; 1); [[Image:al65.jpg]]<br>'''2. Метод алгебраического сложения'''<br>Этот метод, как и метод подстановки, знаком вам из курса алгебры 7-го класса, где он применялся для решения систем линейных уравнений. Суть метода напомним на следующем примере.<br>'''Пример 2.''' Решить систему уравнений [[Image:al66.jpg]]<br>'''Решение.''' Умножим все члены первого уравнения системы на 3, а второе уравнение оставим без изменения: [[Image:al67.jpg]]<br>Вычтем второе уравнение системы из ее первого уравнения:
+
Этот метод мы применяли в 7-м классе для решения систем линейных уравнений. Тот алгоритм, который был выработан в 7-м классе, вполне пригоден для решения систем любых двух уравнений (не обязательно линейных) с двумя переменными х и у (разумеется, переменные могут быть обозначены и другими буквами, что не имеет значения). Фактически этим [[Урок 4. Программа действий. Алгоритм|алгоритмом]] мы воспользовались в предыдущем параграфе, когда задача о двузначном числе привела к математической модели, представляющей собой систему уравнений. Эту систему уравнений мы решили выше методом подстановки (см. пример 1 из § 4).
-
[[Image:al68.jpg]]<br>В результате алгебраического сложения двух уравнений исходной системы получилось уравнение, более простое, чем первое и второе уравнения заданной системы. Этим более простым уравнением мы имеем право заменить любое уравнение заданной системы, например второе. Тогда заданная система уравнений заменится более простой системой: [[Image:al69.jpg]]<br>Эту систему можно решить методом подстановки. Из второго уравнения находим [[Image:al610.jpg]] Подставив это выражение вместо у в первое уравнение системы, получим
+
Алгоритм использования метода подстановки при решении системы двух уравнений с двумя переменными х, у.
-
[[Image:al611.jpg]]<br>Осталось подставить найденные значения х в формулу [[Image:al612.jpg]]
+
1. Выразить у через х из одного уравнения системы.<br>2. Подставить полученное выражение вместо у в другое уравнение системы.<br>3. Решить полученное уравнение относительно х.<br>4. Подставить поочередно каждый из найденных на третьем шаге корней уравнения вместо х в выражение у через х, полученное на первом шаге.<br>5. Записать ответ в виде пар значений (х; у), которые были найдены соответственно на третьем и четвертом шаге.
-
Если х = 2, то [[Image:al613.jpg]]<br>Таким образом, мы нашли два решения системы: [[Image:al614.jpg]]
+
[[Линейное уравнение с двумя переменными и его график|Переменные]] х и у, разумеется, равноправны, поэтому с таким же успехом мы можем на первом шаге алгоритма выразить не у через х, а х через у из одного уравнения. Обычно выбирают то уравнение, которое представляется более простым, и выражают ту переменную из него, для которой эта процедура представляется более простой.
-
'''Ответ:'''&nbsp; [[Image:al615.jpg]]
+
'''Пример 1.''' Решить систему уравнений
-
'''3. Метод введения новых переменных'''<br>С методом введения новой переменной при решении рациональных уравнений с одной переменной вы познакомились в курсе алгебры 8-го класса. Суть этого метода при решении систем уравнений та же самая, но с технической точки зрения имеются некоторые особенности, которые мы и обсудим в следующих примерах.<br>Пример 3. Решить систему уравнений<br>— + — = 2,5, У х<br>х2 - у2 = 3.<br>х<br>Решение. Введем новую переменную *--• Тогда первое<br>У<br>уравнение системы можно будет переписать в более простом виде: Ь + ~ = 2,5. Решим это уравнение относительно переменной I:<br>I 2<br>2;2 + 2 - ы _ л 21<br>2*2 -5* +2 = 0;<br>Оба эти значения удовлетворяют условию 21Ф 0, а потому являются корнями рационального уравнения с переменной I.<br>X&nbsp;&nbsp;&nbsp; X<br>Но I = - , значит, либо — = 2, откуда находим, что х = 2у, либо У&nbsp;&nbsp;&nbsp; У<br>х 1<br>— = - , откуда находим, что у = 2х. У 2<br>Таким образом, с помощью метода введения новой переменной нам удалось как бы «расслоить» первое уравнение системы, достаточно сложное по виду, на два более простых уравнения:<br>х=2у; у — 2х.<br>
+
[[Image:Al61.jpg|120px|Система уравнений]]
-
Что же дальше? А дальше каждое из двух полученных простых уравнений нужно поочередно рассмотреть в системе с уравнением х2 - у2 = 3, о котором мы пока не вспоминали. Иными словами, задача сводится к решению двух систем уравнений:<br>50<br>2.5.<br>СИСТЕМЫ УРАВНЕНИИ<br>х = 2 у,&nbsp;&nbsp;&nbsp; Г у = 2х,<br>х2 - у2 = 3; \х2 - у2 = 3. Надо найти решения первой системы, второй системы и все полученные пары значений включить в ответ. Решим первую систему уравнений:<br>х = 2 у, х2 - у2 = 3.<br>Воспользуемся методом подстановки, тем более что здесь для него все готово: подставим выражение 2у вместо х во второе уравнение системы. Получим<br>(2у)2-у2 = 3; 4 У2 - у2 —3; Зу2 = 3; У2 = 1; 2/1 = !&gt; У2 = -1-<br>Так как х = 2у, то находим соответственно хх = 2, х2 = -2. Тем самым получены два решения заданной системы: (2; 1) и (-2; -1). Решим вторую систему уравнений:<br>у = 2х,<br>х2 - у2 = 3.<br>Снова воспользуемся методом подстановки: подставим выражение 2х вместо у во второе уравнение системы. Получим<br>х2-(2х)2 = 3; х2 -4.x2 = 3; -Зх2 = 3; х2 = -1.<br>Это уравнение не имеет корней, значит, и система уравнений не имеет решений. Таким образом, в ответ надо включить только решения первой системы.<br>Ответ: (2; 1); (-2;-1).<br>Метод введения новых переменных при решении систем двух уравнений с двумя переменными применяется в двух вариантах. Первый вариант: вводится одна новая переменная и используется только в одном<br>4*<br>51<br>2.6. I<br>СИСТЕМЫ УРАВНЕНИЙ<br>уравнении системы. Именно так обстояло дело в примере 3. Второй вариант: вводятся две новые переменные и используются одновременно в обоих уравнениях системы. Так будет обстоять дело в примере 4.<br>Пример 4. Решить систему уравнений 2&nbsp;&nbsp;&nbsp; 3<br>х-3у 8<br>2 х + у 9<br>= 2, = 1.<br>х-3у 2 х + у Решение. Введем две новые переменные: а =<br>6 =<br>Учтем, что тогда<br>8<br>х-3 у<br>- 4а,<br>= 36.<br>2х + у&nbsp;&nbsp;&nbsp; '&nbsp;&nbsp;&nbsp; х-Зу " ' х ~ Зу<br>Это позволит переписать заданную систему в значительно более простом виде, но относительно новых переменных а и Ь:<br>\а + Ь = 2,<br>[4а - 36 = 1.<br>Применим для решения этой системы метод алгебраического сложения:<br>ГЗа + ЗЬ = 6, [4а- 36 = 1.<br>7а =7; а=1.<br>Так как а = 1, то из уравнения а + 6 = 2 находим: 1 + 6 = 2; 6=1. Таким образом, относительно переменных а и 6 мы получили одно решение:<br>[а = 1, [6 = 1.<br>Возвращаясь к переменным х и у, получаем систему уравнений<br>2<br>х-3у 3<br>2х + у<br>= 1, = 1,<br>т.е.<br>х-3 у = 2, 2х + у = 3.<br>52<br>2.6. I<br>СИСТЕМЫ УРАВНЕНИЙ<br>Применим для решения этой системы метод алгебраического сложения:<br>+ Г*-3 у-2, [6х + 3у = 9.<br>7х = 11; 11<br>11<br>И 7 22<br>Так как х = у, то из уравнения 2* + у = 3 находим: у~3-2х =<br>= 3-2-у=3- ?<br>Таким образом, относительно перемен-<br>ных хиу мы получили одно решение:<br>11<br>1<br><br>Ответ:<br>Г11 1<br>7 ' 7<br>обратите внимание<br>равносильность систем уравнений<br>Завершим этот параграф кратким, но достаточно серьезным теоретическим разговором. Вы уже накопили некоторый опыт в решении различных уравнений: линейных, квадратных, рациональных, иррациональных. Вы знаете, что основная идея решения уравнения состоит в постепенном переходе от одного уравнения к другому, более простому, но равносильному заданному. В предыдущем параграфе мы ввели понятие равносильности для уравнений с двумя переменными. Используют это понятие и для систем уравнений.<br>Определение. Две системы уравнений с переменными х и у называют равносильными, если они имеют одни и те же решения или если обе системы не имеют решений.<br>Все три метода (подстановки, алгебраического сложения и введения новых переменных), которые<br>53<br>
+
'''Решение. '''
-
2.6. I<br>СИСТЕМЫ УРАВНЕНИЙ<br>мы обсудили в этом параграфе, абсолютно корректны с точки зрения равносильности. Иными словами, используя эти методы, мы заменяем одну систему уравнений другой, более простой, но равносильной первоначальной системе.<br>
+
1) Выразим х через у из первого уравнения системы: х = 5 - 3у.<br>2)Подставим полученное выражение вместо х во второе уравнение системы: (5 - 3у) у — 2.<br>3)Решим полученное [[Рівняння з двома змінними та його розв'язок. Презентація уроку|уравнение]]:
-
<br>
+
[[Image:Al62.jpg|160px|Система уравнений]]<br>4) Подставим поочередно каждое из найденных значений у в формулу х = 5 - Зу. Если [[Image:Al63.jpg]] то [[Image:Al64.jpg|120px|Уравнение]]<br>5)&nbsp;&nbsp;&nbsp; Пары (2; 1) и [[Image:Al65.jpg]] решения заданной системы уравнений.
-
А.Г. Мордкович Алгебра 9 класс
+
Ответ: (2; 1); [[Image:Al65.jpg]]
 +
<h2>Метод алгебраического сложения</h2>
 +
 +
Этот метод, как и метод подстановки, знаком вам из курса алгебры 7-го класса, где он применялся для решения систем линейных уравнений. Суть метода напомним на следующем примере.
 +
 +
'''Пример 2.''' Решить систему уравнений
 +
 +
[[Image:Al66.jpg|160px|Система уравнений]]<br>'''Решение.'''
 +
 +
Умножим все члены первого уравнения системы на 3, а второе уравнение оставим без изменения: [[Image:Al67.jpg|160px|Система уравнений]]<br>Вычтем второе уравнение системы из ее первого уравнения:
 +
 +
[[Image:Al68.jpg|240px|Система уравнений]]<br>В результате [[Метод алгебраического сложения|алгебраического сложения]] двух уравнений исходной системы получилось уравнение, более простое, чем первое и второе уравнения заданной системы. Этим более простым уравнением мы имеем право заменить любое уравнение заданной системы, например второе. Тогда заданная система уравнений заменится более простой системой:
 +
 +
[[Image:Al69.jpg|160px|Система уравнений]]<br>Эту систему можно решить методом подстановки. Из второго уравнения находим [[Image:Al610.jpg|Уравнение]] Подставив это выражение вместо у в первое уравнение системы, получим
 +
 +
[[Image:Al611.jpg|240px|Система уравнений]]<br>Осталось подставить найденные значения х в формулу [[Image:Al612.jpg|120px|Формула]]
 +
 +
Если х = 2, то
 +
 +
[[Image:Al613.jpg|320px|Решение]]<br>Таким образом, мы нашли два решения системы: [[Image:Al614.jpg|120px|Решение]]
 +
 +
Ответ:&nbsp; [[Image:Al615.jpg|120px|Ответ]]
 +
 +
 +
<h2>Метод введения новых переменных</h2>
 +
 +
С методом введения новой переменной при решении [[Рациональные уравнения|рациональных уравнений]] с одной переменной вы познакомились в курсе алгебры 8-го класса. Суть этого метода при решении систем уравнений та же самая, но с технической точки зрения имеются некоторые особенности, которые мы и обсудим в следующих примерах.
 +
 +
'''Пример 3.''' Решить систему уравнений
 +
 +
[[Image:Al616.jpg|120px|Система уравнений]]
 +
 +
'''Решение.''' Введем новую переменную [[Image:Al617.jpg]] Тогда первое уравнение системы можно будет переписать в более простом виде: [[Image:Al618.jpg|120px|Уравнение]] Решим это уравнение относительно переменной t:
 +
 +
[[Image:Al619.jpg|160px|Решение]]<br>Оба эти значения удовлетворяют условию [[Image:Al620.jpg]], а потому являются корнями рационального уравнения с переменной t. Но [[Image:Al621.jpg]] значит, либо [[Image:Al622.jpg]] откуда находим, что х = 2у, либо&nbsp;[[Image:Al623.jpg]]<br>Таким образом, с помощью метода введения новой переменной нам удалось как бы «расслоить» первое уравнение системы, достаточно сложное по виду, на два более простых уравнения:
 +
 +
х = 2 у; у — 2х.<br>
 +
 +
Что же дальше? А дальше каждое из двух полученных простых уравнений нужно поочередно рассмотреть в системе с уравнением х<sup>2</sup> - у<sup>2</sup> = 3, о котором мы пока не вспоминали. Иными словами, задача сводится к решению двух [[Системи рівнянь з двома змінними. Графічний спосіб розв’язання систем рівнянь з двома змінними|систем уравнений]]:
 +
 +
[[Image:Al624.jpg|240px|Система уравнений]]
 +
 +
Надо найти решения первой системы, второй системы и все полученные пары значений включить в ответ. Решим первую систему уравнений:
 +
 +
[[Image:Al625.jpg|120px|Система уравнений]]<br>Воспользуемся методом подстановки, тем более что здесь для него все готово: подставим выражение 2у вместо х во второе уравнение системы. Получим
 +
 +
[[Image:Al626.jpg|160px|Система уравнений]]<br>Так как х = 2у, то находим соответственно х<sub>1</sub> = 2, х<sub>2</sub> = 2. Тем самым получены два решения заданной системы: (2; 1) и (-2; -1). Решим вторую систему уравнений:
 +
 +
[[Image:Al627.jpg|120px|Система уравнений]]<br>Снова воспользуемся [[Метод подстановки|методом подстановки]]: подставим выражение 2х вместо у во второе уравнение системы. Получим
 +
 +
[[Image:Al628.jpg|120px|Решение]]<br>Это уравнение не имеет корней, значит, и система уравнений не имеет решений. Таким образом, в ответ надо включить только решения первой системы.
 +
 +
Ответ: (2; 1); (-2;-1).
 +
 +
Метод введения новых переменных при решении систем двух уравнений с двумя переменными применяется в двух вариантах. Первый вариант: вводится одна новая переменная и используется только в одном уравнении системы. Именно так обстояло дело в примере 3.Второй вариант: вводятся две новые переменные и используются одновременно в обоих уравнениях системы. Так будет обстоять дело в примере 4.
 +
 +
'''Пример 4.''' Решить систему уравнений
 +
 +
&nbsp;[[Image:Al629.jpg|160px|Система уравнений]]
 +
 +
'''Решение.'''
 +
 +
Введем две новые переменные:
 +
 +
&nbsp;[[Image:Al630.jpg|160px|Решение]]
 +
 +
Учтем, что тогда
 +
 +
[[Image:Al631.jpg|160px|Система уравнений]]
 +
 +
Это позволит переписать заданную систему в значительно более простом виде, но относительно новых переменных а и b:
 +
 +
[[Image:Al632.jpg|120px|Система уравнений]]<br>Применим для решения этой системы метод алгебраического сложения:
 +
 +
[[Image:Al633.jpg|120px|Система уравнений]]<br>Так как а = 1, то из уравнения а + 6 = 2 находим: 1 + 6 = 2; 6=1. Таким образом, относительно переменных а и b мы получили одно решение:
 +
 +
[[Image:Al634.jpg|Решение]]<br>Возвращаясь к переменным х и у, получаем систему уравнений
 +
 +
[[Image:Al635.jpg|240px|Система уравнений]]<br>Применим для решения этой системы метод алгебраического сложения:
 +
 +
[[Image:Al636.jpg|120px|Решение]]<br>Так как [[Image:Al637.jpg]] то из уравнения 2x + y = 3&nbsp; находим: [[Image:Al638.jpg|240px|Решение]]<br>Таким образом, относительно переменных х и у мы получили одно решение:
 +
 +
[[Image:Al639.jpg|80px|Решение]]<br>'''Ответ:''' [[Image:Al640.jpg|80px|Ответ]]<br>Завершим этот параграф кратким, но достаточно серьезным теоретическим разговором. Вы уже накопили некоторый опыт в решении различных уравнений: линейных, квадратных, рациональных, [[Иррациональные уравнения|иррациональных]]. Вы знаете, что основная идея решения уравнения состоит в постепенном переходе от одного уравнения к другому, более простому, но равносильному заданному. В предыдущем параграфе мы ввели понятие равносильности для уравнений с двумя переменными. Используют это понятие и для систем уравнений.
 +
 +
'''Определение.'''
 +
 +
Две системы уравнений с переменными х и у называют равносильными, если они имеют одни и те же решения или если обе системы не имеют решений.
 +
 +
Все три метода (подстановки, алгебраического сложения и введения новых переменных), которые мы обсудили в этом параграфе, абсолютно корректны с точки зрения равносильности. Иными словами, используя эти методы, мы заменяем одну систему уравнений другой, более простой, но равносильной первоначальной системе.<br>
 +
 +
<h2>Графический метод решения систем уравнений</h2>
 +
 +
Мы уже с вами научились решать системы уравнений такими распространенными и надежными способами, как метод подстановки, алгебраического сложения и введения новых переменных. А теперь давайте с вами вспомним, метод, который вы уже изучали на предыдущем уроке. То есть давайте повторим, что вы знаете о графическом методе решения.
 +
 +
Метод решения систем уравнения графическим способом представляет собой построение
 +
графика для каждого из конкретных уравнений, которые входят в данную систему и находятся в одной координатной плоскости, а также где требуется найти пересечения точек этих графиков. Для решения данной системы уравнений являются координаты этой точки (x; y).
 +
 +
Следует вспомнить, что для графической системы уравнений свойственно
 +
иметь либо одно единственное верное решение, либо бесконечное множество решений, либо же не иметь решений вообще.
 +
 +
А теперь на каждом из этих решений остановимся подробнее. И так, система уравнений может иметь единственное решение в случае, если прямые, которые являются графиками уравнений системы, пересекаются. Если же эти прямые параллельны, то такая система уравнений абсолютно не имеет решений. В случае же совпадения прямых графиков уравнений системы, то тогда такая система позволяет найти множество решений.
 +
 +
Ну а теперь давайте с вами рассмотрим алгоритм решения системы двух уравнений с 2-мя неизвестными графическим методом:
 +
 +
• Во-первых, вначале мы с вами строим график 1-го уравнения;<br>
 +
• Вторым этапом будет построение графика, который относится ко второму уравнению;<br>
 +
• В-третьих, нам необходимо найти точки пересечения графиков.<br>
 +
• И в итоге мы получаем координаты каждой точки пересечения, которые и будут решением системы уравнений.<br>
 +
 +
Давайте этот метод рассмотрим более подробно на примере. Нам дана система уравнений, которую необходимо решить:
 +
 +
<br>
 +
[[Image:9kl_Graf_Metod01.jpg|200x500px|графический метод]]
<br>  
<br>  
-
<sub>Материалы по математике [[Гипермаркет знаний - первый в мире!|онлайн]], задачи и ответы по классам, планы конспектов уроков по математике [[Математика|скачать]]</sub>
+
'''Решение уравнений'''
-
'''<u>Содержание урока</u>'''
+
1. Вначале мы с вами будем строить график данного уравнения: x2+y2=9.<br>
-
'''[[Image:1236084776 kr.jpg|10x10px]] конспект урока                      '''
+
-
[[Image:1236084776 kr.jpg|10x10px]] опорный каркас 
+
-
[[Image:1236084776 kr.jpg|10x10px]] презентация урока
+
-
[[Image:1236084776 kr.jpg|10x10px]] акселеративные методы
+
-
[[Image:1236084776 kr.jpg|10x10px]] интерактивные технологии
+
-
+
-
'''<u>Практика</u>'''
+
-
[[Image:1236084776 kr.jpg|10x10px]] задачи и упражнения
+
-
[[Image:1236084776 kr.jpg|10x10px]] самопроверка
+
-
[[Image:1236084776 kr.jpg|10x10px]] практикумы, тренинги, кейсы, квесты
+
-
[[Image:1236084776 kr.jpg|10x10px]] домашние задания
+
-
[[Image:1236084776 kr.jpg|10x10px]] дискуссионные вопросы
+
-
[[Image:1236084776 kr.jpg|10x10px]] риторические вопросы от учеников
+
-
 
+
-
'''<u>Иллюстрации</u>'''
+
-
'''[[Image:1236084776 kr.jpg|10x10px]] аудио-, видеоклипы и мультимедиа '''
+
-
[[Image:1236084776 kr.jpg|10x10px]] фотографии, картинки
+
-
[[Image:1236084776 kr.jpg|10x10px]] графики, таблицы, схемы
+
-
[[Image:1236084776 kr.jpg|10x10px]] юмор, анекдоты, приколы, комиксы
+
-
[[Image:1236084776 kr.jpg|10x10px]] притчи, поговорки, кроссворды, цитаты
+
-
+
-
'''<u>Дополнения</u>'''
+
-
'''[[Image:1236084776 kr.jpg|10x10px]] рефераты'''
+
-
[[Image:1236084776 kr.jpg|10x10px]] статьи
+
-
[[Image:1236084776 kr.jpg|10x10px]] фишки для любознательных
+
-
[[Image:1236084776 kr.jpg|10x10px]] шпаргалки
+
-
[[Image:1236084776 kr.jpg|10x10px]] учебники основные и дополнительные
+
-
[[Image:1236084776 kr.jpg|10x10px]] словарь терминов                         
+
-
[[Image:1236084776 kr.jpg|10x10px]] прочие
+
-
+
-
<u>Совершенствование учебников и уроков
+
-
</u>'''[[Image:1236084776 kr.jpg|10x10px]] исправление ошибок в учебнике'''
+
-
[[Image:1236084776 kr.jpg|10x10px]] обновление фрагмента в учебнике
+
-
[[Image:1236084776 kr.jpg|10x10px]] элементы новаторства на уроке
+
-
[[Image:1236084776 kr.jpg|10x10px]] замена устаревших знаний новыми
+
-
 
+
-
'''<u>Только для учителей</u>'''
+
-
'''[[Image:1236084776 kr.jpg|10x10px]] идеальные уроки '''
+
-
[[Image:1236084776 kr.jpg|10x10px]] календарный план на год 
+
-
[[Image:1236084776 kr.jpg|10x10px]] методические рекомендации 
+
-
[[Image:1236084776 kr.jpg|10x10px]] программы
+
-
[[Image:1236084776 kr.jpg|10x10px]] обсуждения
+
-
+
-
+
-
'''<u>Интегрированные уроки</u>'''<u>
+
-
</u>
+
 +
Но следует заметить, что данным графиком уравнений будет окружность, имеющая центр в начале координат, а ее радиус будет равен трем.
 +
 +
2. Следующим нашим шагом будет построение графика такого уравнения, как:
 +
y = x – 3.<br>
 +
 +
В этом случае, мы должны построить прямую и найти точки (0;−3) и (3;0).
 +
 +
<br>
 +
[[Image:9kl_Graf_Metod02.jpg|500x500px|графический метод]]
<br>  
<br>  
-
Если у вас есть исправления или предложения к данному уроку, [http://xvatit.com/index.php?do=feedback напишите нам].  
+
3. Смотрим, что у нас получилось. Мы видим, что прямая пересекает окружность в двух ее точках A и B. <br>
 +
 
 +
Теперь мы с вами ищем координаты этих точек. Мы видим, что координаты (3;0) соответствуют точке А, а координаты (0;−3) соответственно точке В.
 +
 
 +
И что мы получаем в итоге?  
 +
 
 +
Получившиеся при пересечении прямой с окружностью числа (3;0) и (0;−3), как раз и являются решениями обоих уравнений системы. А из этого следует, что данные числа являются и решениями этой системы уравнений.
 +
 
 +
То есть, ответом этого решения являются числа: (3;0) и (0;−3).
-
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - [http://xvatit.com/forum/ Образовательный форум].
+
''А.Г. Мордкович [http://xvatit.com/vuzi/ Алгебра] 9 класс''

Текущая версия на 11:35, 7 июля 2015

Гипермаркет знаний>>Математика>>Математика 9 класс>>Математика: Методы решения систем уравнений

Содержание

Какие существуют методы решения систем уравнения?

В этом параграфе мы обсудим три метода решения систем уравнений, более надежные, чем графический метод, который рассмотрели в предыдущем параграфе.

Метод подстановки

Этот метод мы применяли в 7-м классе для решения систем линейных уравнений. Тот алгоритм, который был выработан в 7-м классе, вполне пригоден для решения систем любых двух уравнений (не обязательно линейных) с двумя переменными х и у (разумеется, переменные могут быть обозначены и другими буквами, что не имеет значения). Фактически этим алгоритмом мы воспользовались в предыдущем параграфе, когда задача о двузначном числе привела к математической модели, представляющей собой систему уравнений. Эту систему уравнений мы решили выше методом подстановки (см. пример 1 из § 4).

Алгоритм использования метода подстановки при решении системы двух уравнений с двумя переменными х, у.

1. Выразить у через х из одного уравнения системы.
2. Подставить полученное выражение вместо у в другое уравнение системы.
3. Решить полученное уравнение относительно х.
4. Подставить поочередно каждый из найденных на третьем шаге корней уравнения вместо х в выражение у через х, полученное на первом шаге.
5. Записать ответ в виде пар значений (х; у), которые были найдены соответственно на третьем и четвертом шаге.

Переменные х и у, разумеется, равноправны, поэтому с таким же успехом мы можем на первом шаге алгоритма выразить не у через х, а х через у из одного уравнения. Обычно выбирают то уравнение, которое представляется более простым, и выражают ту переменную из него, для которой эта процедура представляется более простой.

Пример 1. Решить систему уравнений

Система уравнений

Решение.

1) Выразим х через у из первого уравнения системы: х = 5 - 3у.
2)Подставим полученное выражение вместо х во второе уравнение системы: (5 - 3у) у — 2.
3)Решим полученное уравнение:

Система уравнений
4) Подставим поочередно каждое из найденных значений у в формулу х = 5 - Зу. Если Al63.jpg то Уравнение
5)    Пары (2; 1) и Al65.jpg решения заданной системы уравнений.

Ответ: (2; 1); Al65.jpg

Метод алгебраического сложения

Этот метод, как и метод подстановки, знаком вам из курса алгебры 7-го класса, где он применялся для решения систем линейных уравнений. Суть метода напомним на следующем примере.

Пример 2. Решить систему уравнений

Система уравнений
Решение.

Умножим все члены первого уравнения системы на 3, а второе уравнение оставим без изменения: Система уравнений
Вычтем второе уравнение системы из ее первого уравнения:

Система уравнений
В результате алгебраического сложения двух уравнений исходной системы получилось уравнение, более простое, чем первое и второе уравнения заданной системы. Этим более простым уравнением мы имеем право заменить любое уравнение заданной системы, например второе. Тогда заданная система уравнений заменится более простой системой:

Система уравнений
Эту систему можно решить методом подстановки. Из второго уравнения находим Уравнение Подставив это выражение вместо у в первое уравнение системы, получим

Система уравнений
Осталось подставить найденные значения х в формулу Формула

Если х = 2, то

Решение
Таким образом, мы нашли два решения системы: Решение

Ответ:  Ответ


Метод введения новых переменных

С методом введения новой переменной при решении рациональных уравнений с одной переменной вы познакомились в курсе алгебры 8-го класса. Суть этого метода при решении систем уравнений та же самая, но с технической точки зрения имеются некоторые особенности, которые мы и обсудим в следующих примерах.

Пример 3. Решить систему уравнений

Система уравнений

Решение. Введем новую переменную Al617.jpg Тогда первое уравнение системы можно будет переписать в более простом виде: Уравнение Решим это уравнение относительно переменной t:

Решение
Оба эти значения удовлетворяют условию Al620.jpg, а потому являются корнями рационального уравнения с переменной t. Но Al621.jpg значит, либо Al622.jpg откуда находим, что х = 2у, либо Al623.jpg
Таким образом, с помощью метода введения новой переменной нам удалось как бы «расслоить» первое уравнение системы, достаточно сложное по виду, на два более простых уравнения:

х = 2 у; у — 2х.

Что же дальше? А дальше каждое из двух полученных простых уравнений нужно поочередно рассмотреть в системе с уравнением х2 - у2 = 3, о котором мы пока не вспоминали. Иными словами, задача сводится к решению двух систем уравнений:

Система уравнений

Надо найти решения первой системы, второй системы и все полученные пары значений включить в ответ. Решим первую систему уравнений:

Система уравнений
Воспользуемся методом подстановки, тем более что здесь для него все готово: подставим выражение 2у вместо х во второе уравнение системы. Получим

Система уравнений
Так как х = 2у, то находим соответственно х1 = 2, х2 = 2. Тем самым получены два решения заданной системы: (2; 1) и (-2; -1). Решим вторую систему уравнений:

Система уравнений
Снова воспользуемся методом подстановки: подставим выражение 2х вместо у во второе уравнение системы. Получим

Решение
Это уравнение не имеет корней, значит, и система уравнений не имеет решений. Таким образом, в ответ надо включить только решения первой системы.

Ответ: (2; 1); (-2;-1).

Метод введения новых переменных при решении систем двух уравнений с двумя переменными применяется в двух вариантах. Первый вариант: вводится одна новая переменная и используется только в одном уравнении системы. Именно так обстояло дело в примере 3.Второй вариант: вводятся две новые переменные и используются одновременно в обоих уравнениях системы. Так будет обстоять дело в примере 4.

Пример 4. Решить систему уравнений

 Система уравнений

Решение.

Введем две новые переменные:

 Решение

Учтем, что тогда

Система уравнений

Это позволит переписать заданную систему в значительно более простом виде, но относительно новых переменных а и b:

Система уравнений
Применим для решения этой системы метод алгебраического сложения:

Система уравнений
Так как а = 1, то из уравнения а + 6 = 2 находим: 1 + 6 = 2; 6=1. Таким образом, относительно переменных а и b мы получили одно решение:

Решение
Возвращаясь к переменным х и у, получаем систему уравнений

Система уравнений
Применим для решения этой системы метод алгебраического сложения:

Решение
Так как Al637.jpg то из уравнения 2x + y = 3  находим: Решение
Таким образом, относительно переменных х и у мы получили одно решение:

Решение
Ответ: Ответ
Завершим этот параграф кратким, но достаточно серьезным теоретическим разговором. Вы уже накопили некоторый опыт в решении различных уравнений: линейных, квадратных, рациональных, иррациональных. Вы знаете, что основная идея решения уравнения состоит в постепенном переходе от одного уравнения к другому, более простому, но равносильному заданному. В предыдущем параграфе мы ввели понятие равносильности для уравнений с двумя переменными. Используют это понятие и для систем уравнений.

Определение.

Две системы уравнений с переменными х и у называют равносильными, если они имеют одни и те же решения или если обе системы не имеют решений.

Все три метода (подстановки, алгебраического сложения и введения новых переменных), которые мы обсудили в этом параграфе, абсолютно корректны с точки зрения равносильности. Иными словами, используя эти методы, мы заменяем одну систему уравнений другой, более простой, но равносильной первоначальной системе.

Графический метод решения систем уравнений

Мы уже с вами научились решать системы уравнений такими распространенными и надежными способами, как метод подстановки, алгебраического сложения и введения новых переменных. А теперь давайте с вами вспомним, метод, который вы уже изучали на предыдущем уроке. То есть давайте повторим, что вы знаете о графическом методе решения.

Метод решения систем уравнения графическим способом представляет собой построение графика для каждого из конкретных уравнений, которые входят в данную систему и находятся в одной координатной плоскости, а также где требуется найти пересечения точек этих графиков. Для решения данной системы уравнений являются координаты этой точки (x; y).

Следует вспомнить, что для графической системы уравнений свойственно иметь либо одно единственное верное решение, либо бесконечное множество решений, либо же не иметь решений вообще.

А теперь на каждом из этих решений остановимся подробнее. И так, система уравнений может иметь единственное решение в случае, если прямые, которые являются графиками уравнений системы, пересекаются. Если же эти прямые параллельны, то такая система уравнений абсолютно не имеет решений. В случае же совпадения прямых графиков уравнений системы, то тогда такая система позволяет найти множество решений.

Ну а теперь давайте с вами рассмотрим алгоритм решения системы двух уравнений с 2-мя неизвестными графическим методом:

• Во-первых, вначале мы с вами строим график 1-го уравнения;
• Вторым этапом будет построение графика, который относится ко второму уравнению;
• В-третьих, нам необходимо найти точки пересечения графиков.
• И в итоге мы получаем координаты каждой точки пересечения, которые и будут решением системы уравнений.

Давайте этот метод рассмотрим более подробно на примере. Нам дана система уравнений, которую необходимо решить:


графический метод

Решение уравнений

1. Вначале мы с вами будем строить график данного уравнения: x2+y2=9.

Но следует заметить, что данным графиком уравнений будет окружность, имеющая центр в начале координат, а ее радиус будет равен трем.

2. Следующим нашим шагом будет построение графика такого уравнения, как: y = x – 3.

В этом случае, мы должны построить прямую и найти точки (0;−3) и (3;0).


графический метод

3. Смотрим, что у нас получилось. Мы видим, что прямая пересекает окружность в двух ее точках A и B.

Теперь мы с вами ищем координаты этих точек. Мы видим, что координаты (3;0) соответствуют точке А, а координаты (0;−3) соответственно точке В.

И что мы получаем в итоге?

Получившиеся при пересечении прямой с окружностью числа (3;0) и (0;−3), как раз и являются решениями обоих уравнений системы. А из этого следует, что данные числа являются и решениями этой системы уравнений.

То есть, ответом этого решения являются числа: (3;0) и (0;−3).

А.Г. Мордкович Алгебра 9 класс